Bioturbation of infauna plays an important role in the biogeochemical processing of sediments. Infaunal animals build burrows and enlarge the sediment-water interface by their activities and so bioturbation is closely related with burrow structure and animal behavior in the sediment. The purpose of this study is to explore the characteristics of Perinereis aibuhitensis burrow structures with the factors of months and animal sizes (0-1g, 1-2g, 2-3g, 3-4g, and >4g), which would also provide useful knowledge of infauna behavioral ecology. The dimension and complexity of the burrows of P. aibuhitensis were measured by dissecting sediments. The results showed that there were three burrow shapes of P. aibuhitensis, i.e., I, Y and U shapes. Overall, the order of abundance of each of the three burrow shapes were I > Y > U. Larger P. aibuhitensis are inclined to build Y- and U-shaped burrows in June and August. There were significant differences in the tunnel diameter, burrow depth and burrow length separately between different polychaete size classes (P< 0.001). In February and August, the burrow depths and burrow lengths of P. aibuhitensis individuals with body weights of 1-2 g and 2-3 g were significantly greater than in other months (P< 0.001). P. aibuhitensis individuals of 1-2 g and 3-4 g body weight had significantly more burrow openings and branches in August than in February (P< 0.001). Within the same month, the burrow HEindex increased with increasing polychaete size, and when the sizes were 1-2 g, 2-3 g and 3-4 g, the complexity in August was higher than that in other months. This study suggests that I-shaped burrow dominants the burrow architecture of P. aibuhitensis. The polychaete with large size has a higher HEindex (burrow complexity) indicating a strong bioturbation ability. Y-shaped burrows are more conducive to the survival of P. aibuhitensis in hot weather. In order to adapt to environmental stresses outside, P. aibuhitensis usually builds deeper burrows.
The Ria de Aveiro is an important coastal lagoon for wildlife in Portugal, where the production of bivalves reaches approximately 2700 tonnes annually. However, the illegal overfishing of bivalves is frequent in this lagoon, which causes critical changes in the ecosystem. In this study, using a developed food-web model (Ecopath model), the ecological carrying capacity and maximum sustained yield of bivalve filter feeders were estimated, and further increases in bivalve biomass in other species groups were investigated. The results showed that 1) the current biomass and legal catch of bivalves do not yet exceed the ecological carrying capacity (177.84 tonnes km− 2) or the maximum sustained yield (88.92 tonnes km− 2 year− 1) in Ria de Averio; 2) the harvested bivalves of the maximum sustained yield represent removing from the ecosystem ~ 581 tonnes carbon (C) and ~ 83 tonnes nitrogen (N) annually, with substantial ecological and economic implications; and 3) a further increase in the biomass levels of bivalves may cause the ecotrophic efficiency of other groups to become unrealistic, potentially leading to decreases in ecosystem transfer efficiency, biodiversity and health. The results here are expected to guide the sustainable development and management of bivalves in Ria de Averio and the protection of the local environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.