In this paper, adaptive impedance control is developed for an n-link robotic manipulator with input saturation by employing neural networks. Both uncertainties and input saturation are considered in the tracking control design. In order to approximate the system uncertainties, we introduce a radial basis function neural network controller, and the input saturation is handled by designing an auxiliary system. By using Lyapunov's method, we design adaptive neural impedance controllers. Both state and output feedbacks are constructed. To verify the proposed control, extensive simulations are conducted.
This paper investigates adaptive fuzzy neural network (NN) control using impedance learning for a constrained robot, subject to unknown system dynamics, the effect of state constraints, and the uncertain compliant environment with which the robot comes into contact. A fuzzy NN learning algorithm is developed to identify the uncertain plant model. The prominent feature of the fuzzy NN is that there is no need to get the prior knowledge about the uncertainty and a sufficient amount of observed data. Also, impedance learning is introduced to tackle the interaction between the robot and its environment, so that the robot follows a desired destination generated by impedance learning. A barrier Lyapunov function is used to address the effect of state constraints. With the proposed control, the stability of the closed-loop system is achieved via Lyapunov's stability theory, and the tracking performance is guaranteed under the condition of state constraints and uncertainty. Some simulation studies are carried out to illustrate the effectiveness of the proposed scheme.
This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse term is used in the control design. To handle the unmodeled dynamics, the neural network (NN) is adopted to approximate the uncertain dynamics. The NN control based on full-state feedback for robots is proposed when all states of the closed loop are known. Subsequently, only the robot joint is measurable in practice; output feedback control is designed with a high-gain observer to estimate unmeasurable states. Through the Lyapunov stability analysis, system stability is achieved with the proposed control, and the system output achieves convergence without violation of the joint constraints. Simulation is conducted to approve the feasibility and superiority of the proposed NN control.
This paper addresses the control design for an upper limb exoskeleton in the presence of input saturation. An adaptive controller employing the neural network technology is proposed to approximate the uncertain robotic dynamics. Also, an auxiliary system is designed to deal with the effect of input saturation. Furthermore, we develop both the state feedback and the output feedback control strategies, which effectively estimates the uncertainties online from the measured feedback errors, instead of the model-based control. In addition to the proposed control, a disturbance observer is designed to reject the unknown disturbance online for achieving the trajectory tracking. The method requires a minimal amount of a priori knowledge of system dynamics. Subsequently, the principle of Lyapunov synthesis ensures the stability of the closed-loop system. Finally, the experimental studies are carried out on this robotic exoskeleton.
In this paper, an adaptive neural bounded control scheme is proposed for an n-link rigid robotic manipulator with unknown dynamics. With combination of neural approximation and backstepping technique, an adaptive neural network control policy is developed to guarantee the tracking performance of the robot. Different from the existing results, the bounds of the designed controller are known a priori, and they are determined by controller gains, making them applicable within actuator limitations. Furthermore, the designed controller is also able to compensate the effect of unknown robotic dynamics. Via Lyapunov stability theory, it can be proved that all the signals are uniformly ultimately bounded (UUB). Simulations are carried out to verify the effectiveness of the proposed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.