Dental pulp stem cells (DPSCs) possess immunoregulatory properties, but the underlying mechanism is not fully understood. Here we showed that DPSCs were capable of inducing activated T-cell apoptosis in vitro and ameliorating inflammatory-related tissue injuries when systemically infused into a murine colitis model. Mechanistically, DPSC-induced immunoregulation was associated with the expression of Fas ligand (FasL), a transmembrane protein that plays an important role in inducing the Fas apoptotic pathway. Knockdown of FasL expression by siRNA in DPSCs reduced their capacity to induce T-cell apoptosis in vitro and abolished their therapeutic effects in mice with colitis. However, the expression level of FasL did not affect either DPSC proliferation rate or multipotent differentiation potential. In summary, FasL governs the immunoregulatory property of DPSCs in the context of inducing T-cell apoptosis.
a b s t r a c tThe antineoplastic target aldo-keto reductase family member 1B10 (AKR1B10) and the critical polyol pathway enzyme aldose reductase (AKR1B1) share high structural similarity. Crystal structures reported here reveal a surprising Trp112 native conformation stabilized by a specific Gln114-centered hydrogen bond network in the AKR1B10 holoenzyme, and suggest that AKR1B1 inhibitors could retain their binding affinities toward AKR1B10 by inducing Trp112 flip to result in an ''AKR1B1-like'' active site in AKR1B10, while selective AKR1B10 inhibitors can take advantage of the broader active site of AKR1B10 provided by the native Trp112 side-chain orientation.
For decades, nanoscale metal–organic frameworks (nMOFs) have attracted extensive interest in biomedicine due to their distinct characteristics, including facile synthesis, porous interior, and tunable biocompatibility. With high porosity, versatile nMOFs allow for the facile encapsulation of various therapeutic agents with exceptionally high payloads. Constructed from metal ions and organic linkers through coordination bonds, nMOFs with plentiful functional groups enable the surface modification for active targeting and enhanced biocompatibility. This review outlines the up‐to‐date progresses on the exploration of nMOFs in the field of biomedicine. First, the classification and synthesis of nMOFs are discussed, followed by the concrete introduction of drug loading strategies of nMOFs and mechanisms of stimulation‐responsive drug release. Second, the smart designs of the nMOFs‐based platforms for anticancer and antibacterial treatment are summarized. Finally, the basic challenges faced by nMOFs research and the great potential of biomimetic nMOFs are presented. This review article affords an inspiring insight into the interdisciplinary research of nMOFs and their biomedical applications, which holds great expectation for their further clinical translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.