Plantations with different allocation patterns significantly affect soil elements, microorganisms, extracellular enzymes, and their stoichiometric characteristics. Rather than studying them as a continuum, this study used four common allocations of plantations: Zanthoxylum planispinum var. dintanensis (hereafter Z. planispinum) + Prunus salicina, Z. planispinum + Sophora tonkinensis, Z. planispinum + Arachis hypogaea, and Z. planispinum + Lonicera japonica plantations, as well as a single-stand Z. planispinum plantation as a control. Soil samples from depths of 0–10 and 10–20 cm at the five plantations were used to analyze the element stoichiometry, microorganisms and extracellular enzymes. (1) One-way analysis of variance (ANOVA) showed that the contents of soil organic carbon (C), nitrogen (N), phosphorus (P), and potassium (K) of Z. planispinum + L. japonica plantation were high, while those of calcium (Ca) and magnesium (Mg) were low compared to the Z. planispinum pure plantation; soil microbial and enzyme activities were also relatively high. Stoichiometric analysis showed that soil quality was good and nutrient contents were high compared to the other plantations, indicating that this was the optimal plantation. (2) Two-way ANOVA showed that stoichiometry was more influenced by plantation type than soil depth and their interaction, suggesting that plantation type significantly affected the ecosystem nutrient cycle; soil microbial biomass (MB) C:MBN:MBP was not sensitive to changes in planting, indicating that MBC:MBN:MBP was more stable than soil C:N:P, which can be used to diagnose ecosystem nutrient constraints. (3) Pearson’s correlation and standardized major axis analyses showed that there was no significant correlation between soil C:N:P and MBC:MBN:MBP ratios in this study; moreover, MBN:MBP had significant and extremely significant correlations with MBC:MBN and MBC:MBP. Fitting the internal stability model equation of soil nutrient elements and soil MBC, MBN, and MBP failed (p > 0.05), and the MBC, MBN, and MBP and their stoichiometric ratios showed an absolute steady state. This showed that, in karst areas with relative nutrient deficiency, soil microorganisms resisted environmental stress and showed a more stable stoichiometric ratio. Overall stoichiometric characteristics indicated that the Z. planispinum + L. japonica plantation performed best.
Leaf structural and physiological traits, nutrients, and other functional properties reflect the ability of plants to self-regulate and adapt to the environment. Species diversity can positively affect plant growth by improving the habitat, and offers mutual interspecies benefits. Therefore, optimizing the types of plants grown in a specific area is conducive to achieving sustainable development goals for plant growth. In this study, companion planting of Zanthoxylum planispinum ‘dintanensis’ (hereafter Z. planispinum) with Prunus salicina Lindl., Sophora tonkinensis Gagnep., Arachis hypogaea L. and Lonicera japonica Thunb. was investigated, along with a monoculture Z. planispinum plantation. The effect of different planting combinations on the adaptive mechanisms of Z. planispinum and its response to the soil was explored. These results revealed that Z. planispinum preferred the slow growth strategy of small specific leaf area, high leaf water content, and high chlorophyll content after combination with P. salicina. Conversely, after combination with S. tonkinensis, Z. planispinum exhibited a fast growth strategy. Combination with A. hypogaea enabled Z. planispinum to adopt a transition from slow to fast growth. Z. planispinum regulated its economy of growth through multiple functional trait combinations, indicating that planting combinations impacted its adaptive strategies. The adaptability of Z. planispinum in combination with P. salicina, L. japonica, A. hypogaea and S. tonkinensis decreased in turn, with only the adaptability of Z. planispinum + S. tonkinensis lower than that of the pure forest. Leaf functional traits were jointly influenced by soil water content, microbial biomass carbon (MBC), MB nitrogen (N), MB phosphorus (P), available N, total P and available calcium (C:N:P). The main contributors were soil water content, the different component levels and stoichiometry of elements and the MB. The results demonstrated that companion planting can promote or inhibit the growth of Z. planispinum by adjusting its functional traits.
The soil quality of plantations with different planting patterns and the effect of soil quality on stoichiometry provide a theoretical basis for the selection of Zanthoxylum planispinum var. dintanensis (hereafter Z. planispinum) planting patterns and nutrient management. Four mixed plantations: Z. planispinum + Prunus salicina, Z. planispinum + Sophora tonkinensis, Z. planispinum + Arachis hypogaea, and Z. planispinum + Lonicera japonica, and a monoculture Z. planispinum plantation were selected to clarify the effect of soil quality on stoichiometry. The results showed that the soil quality index (SQI) of Z. planispinum + L. japonica (1.678) was the highest, indicating that it was the preferred planting combination and that it was significantly limited by soil water content (SWC). The nutrient forms, SWC, and pH all have significant effects on processes such as nutrient transformation and cycling. The contributions of total Ca and total Mg in soil nutrients to stoichiometry w relatively high, while the effect of SQI on stoichiometry was not significant. The microbial stoichiometry ratio was mainly influenced by microbial biomass phosphorus, reflecting that microorganisms have strong internal stability. Strong interactions among soil factors occur, affecting elemental geochemical processes. The regulatory effects of different soil factors on their stoichiometry should be emphasized.
In this study, the effect of different planting combinations on the amino acid concentration in the pericarp of Zanthoxylum planispinum ‘dintanensis’ (hereafter referred to as Z. planispinum) was studied, and the response of amino acid concentration to soil factors was clarified. The aim of this study was to screen optimal planting combinations and provide a theoretical basis for improving pericarp quality. Five planting combinations of Z. planispinum in a karst rocky desertification area were selected as the research objects, and the concentration and accumulation of free amino acids in the pericarp of Z. planispinum were analyzed. Then, combined with existing soil quality data, the pericarp quality of Z. planispinum was comprehensively evaluated by principal component analysis, and the effect of soil factors on amino acid concentrations was clarified by redundancy analysis. The results are as follows: (1) except for arginine, serine, proline, alanine, tyrosine and cystine, the concentrations of other free amino acids significantly differed among the five planting combinations. In general, the planting combination has a great influence on the concentration of free amino acids in the pericarp of Z. planispinum, especially essential amino acids; (2) free amino acid concentration in the pericarp of Z. planispinum mostly increased in combination with Sophora tonkinensis Gagnep. (hereafter referred to as S. tonkinensis) and decreased in combination with Prunus salicina Lindl; (3) principal component analysis showed that the concentration of free amino acid in the pericarp of Z. planispinum was generally at a high level when combined with S. tonkinensis or Lonicera japonica Thunb. (hereafter referred to as L. japonica). Among them, the amino acids in the pericarp of Z. planispinum with S. tonkinensis were closer to the ideal protein standard of FAO/WHO; (4) soil-available potassium, available phosphorus, microbial biomass nitrogen, available calcium and microbial biomass phosphorus in soil factors had significant effects on amino acid concentration after a redundancy analysis. It can be seen that the available nutrients and soil microbial biomass contribute greatly to the amino acid concentration of the pericarp. According to the soil quality and the amino acid quality of the pericarp, planting with L. japonica can improve the amino acid quality of the pericarp of Z. planispinum, as well as selecting Z. planispinum + L. japonica as the optimal planting combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.