Many of the biological applications and effects of nanomaterials are attributed to their ability to facilitate the generation of reactive oxygen species (ROS). Electron spin resonance (ESR) spectroscopy is a direct and reliable method to identify and quantify free radicals in both chemical and biological environments. In this review, we discuss the use of ESR spectroscopy to study ROS generation mediated by nanomaterials, which have various applications in biological, chemical, and materials science. In addition to introducing the theory of ESR, we present some modifications of the method such as spin trapping and spin labeling, which ultimately aid in the detection of short-lived free radicals. The capability of metal nanoparticles in mediating ROS generation and the related mechanisms are also presented.
ABSTRACT:This study aimed to evaluate the effects of Schisandra lignan extract (SLE) with short-and long-term pretreatment on regulating rat hepatic and intestinal CYP3A for a comprehensive evaluation of metabolism-based herb-drug interactions. Inhibitory effects of SLE and its major components on rat CYP3A were confirmed in both hepatic and intestinal microsomal incubation systems. After a single dose of SLE pretreatment, higher C max and area under the concentration-time curves from zero to infinity (AUC 0-ؕ ) values were observed for intragastric midazolam (MDZ), whereas those for the intravenous MDZ were little changed. The mechanismbased inhibition of SLE toward CYP3A was further confirmed in vivo, characterized with a recovery half-life of 38 h. In contrast, SLE long-term treatment enhanced both hepatic (2.5-fold) and intestinal (4.0-fold) CYP3A protein expression and promoted the in vivo clearance of MDZ. When MDZ was coadministered with SLE after a consecutive long-term treatment, the AUC 0-ؕ value of MDZ was still lower than that of the control group, suggesting a much stronger inducing than inhibiting effect of SLE toward CYP3A. Furthermore, the intragastric administration of SLE exhibited a more intensive regulating effect toward intestinal than hepatic CYP3A, which could be partially explained by the relatively high exposures of lignans in the intestine. In conclusion, this study provides a comprehensive map for showing the complicated effects of SLE and its components on regulating rat CYP3A. The important findings are that SLE possesses a much stronger inducing than inhibiting effect on CYP3A, as well as a more intensive regulating effect on intestinal than hepatic CYP3A.
Hepatocytes derived from human induced pluripotent stem cells (iPSCs) hold great promise as an in vitro liver model by virtue of their unlimited long-term supply, stability and consistency in functionality, and affordability of donor diversity. However, the suitability of iPSC-derived hepatocytes (iPSC-Heps) for toxicology studies has not been fully validated. In the current study, we characterized global gene expression profiles of iPSC-Heps in comparison to those of primary human hepatocytes (PHHs) and several human hepatoma cell lines (HepaRG, HuH-7, HepG2, and HepG2/C3A). Furthermore, genes associated with hepatotoxicity, drug-metabolizing enzymes, transporters, and nuclear receptors were extracted for more detailed comparisons. Our results showed that iPSC-Heps correlate more closely to PHHs than hepatoma cell lines, suggesting that iPSC-Heps had a relatively mature hepatic phenotype that more closely resembles that of adult hepatocytes. HepaRG was the sole exception but nonetheless suffers from lack of donor diversity and poor prediction of hepatotoxicity. The effects of sex differences and DMSO treatment on gene expression of the cellular models were also investigated. Overall, the results presented in the current study suggest that iPSC-Heps represent a reproducible source of human hepatocytes and a promising in vitro model for hepatotoxicity evaluation. Further studies are needed to develop a robust protocol for hepatocyte differentiation towards a more mature adult phenotype.
ABSTRACT:We have previously identified that the predominant metabolic pathway for tanshinone IIa (TSA) in rat is the NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated quinone reduction and subsequent glucuronidation. The present study contributes to further research on its glucuronidation enzyme kinetics, the identification of human UDP-glucuronosyltransferase (UGT) isoforms, and the interaction potential with typical UGT substrates. A pair of regioisomers (M1 and M2) of reduced TSA glucuronides was found from human, rat, and mouse, whereas only M1 was found in dog liver S9 incubations. The overall glucuronidation clearance of TSA in human liver S9 was 11.8 ؎ 0.8 l/min/mg protein, 0.7-, 0.8-, and 3-fold of that in the mouse, rat, and dog, respectively. Using intrinsic clearance M2/M1 as a regioselective index, opposite regioselectivity was found between human (0.7) and mouse (1.3), whereas no significant regioselectivity was found in rat. In a sequential metabolism system, by applying human liver cytosol as an NQO1 donor combined with a screening panel of 12 recombinant human UGTs, multiple UGTs were found involved in the M1 formation, whereas only UGT1A9 and, to a very minor extent, UGT1A1 and UGT1A3 contributed to the M2 formation. Further enzyme kinetics, correlation, and chemical inhibition studies confirmed that UGT1A9 played a major role in both M1 and M2 formation. In addition, TSA presented a potent inhibitory effect on the glucuronidation of typical UGT1A9 substrates propofol and mycophenolic acid, with an IC 50 value of 8.4 ؎ 1.8 and 8.9 ؎ 1.9 M, respectively. This study will help to guide future studies on characterizing the NQO1-mediated reduction and subsequent glucuronidation of other quinones.Quinones are a large group of compounds ubiquitous in nature and characterized with great biological, pharmacological, and/or toxicological significance. Humans are unavoidably exposed to many endogenous quinones such as coenzyme Q, vitamin K, oxidized products of endogenous phenols, and some xenobiotic quinones from foods, environmental pollutants, and drugs. The carbonyl group in the quinone structure is often a determining functional factor for their activities (Oppermann, 2007). For example, the quinone/hydroquinone interconversion of coenzyme Q plays an important role in the electron transport involved in cellular respiration, and the one-electron and/or two-electron reduction of the quinone carbonyl group-triggered redox cycle also largely explains the pharmacological or toxicological activities of many quinones. Note that the quinone carbonyl reduction and subsequent conjugation constitute the major biotransformation and metabolic elimination pathway of most quinones. Therefore, the biotransformation study of quinones is essential for understanding their bioactivation, detoxification, and/or inactivation process.Tanshinones are a class of diterpene phenanthrenequinone compounds isolated from the dried root of Salvia miltiorrhiza (Fam. Labiatae), which is a widely used traditional Chinese medicine with w...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.