A bulky, optically active monoanionic scorpionate ligand, tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li[ToP*] (1). That compound is readily converted to the thallium complex Tl[ToP*] (2) and to the acid derivative H[ToP*] (3). Group 7 tricarbonyl complexes ToP*M(CO)3(M = Mn (4), Re (5)) are synthesized by the reaction of MBr(CO)5 and Li[ToP*] and are crystallographically characterized. The νCO bands in their infrared spectra indicate that π back-donation in the rhenium compounds is greater with ToP* than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (ToP). The reaction of H[ToP*] and ZnEt2 gives ToP*ZnEt (6), while ToP*ZnCl (7) is synthesized from Li[ToP*] and ZnCl2. The reaction of ToP*ZnCl and KOtBu followed by addition of PhSiH3 provides the zinc hydride complex ToP*ZnH (8). Compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity. Disciplines Chemistry CommentsReprinted (adapted) with permission from Organometallics 34 (2015) (5)) are synthesized by the reaction of MBr(CO) 5 and Li[To P *] and are crystallographically characterized. The ν CO bands in their infrared spectra indicate that π back-donation in the rhenium compounds is greater with To P * than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (To P ). The reaction of H[To P *] and ZnEt 2 gives To P *ZnEt (6), while To P *ZnCl (7) is synthesized from Li[To P *] and ZnCl 2 . The reaction of To P *ZnCl and KOtBu followed by addition of PhSiH 3 provides the zinc hydride complex To P *ZnH (8). Compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.