Basal dendrites are a major target for synaptic inputs innervating cortical pyramidal neurons. At present little is known about signal processing in these fine dendrites. Here we show that coactivation of clustered neighbouring basal inputs initiated local dendritic spikes, which resulted in a 5.9 +/- 1.5 mV (peak) and 64.4 +/- 19.8 ms (half-width) cable-filtered voltage change at the soma that amplified the somatic voltage response by 226 +/- 46%. These spikes were accompanied by large calcium transients restricted to the activated dendritic segment. In contrast to conventional sodium or calcium spikes, these spikes were mediated mostly by NMDA (N-methyl-D-aspartate) receptor channels, which contributed at least 80% of the total charge. The ionic mechanism of these NMDA spikes may allow 'dynamic spike-initiation zones', set by the spatial distribution of glutamate pre-bound to NMDA receptors, which in turn would depend on recent and ongoing activity in the cortical network. In addition, NMDA spikes may serve as a powerful mechanism for modification of the cortical network by inducing long-term strengthening of co-activated neighbouring inputs.
The temporal and spatial profile of activity-evoked changes in membrane potential and intracellular calcium concentration in the dendrites of hippocampal CA1 pyramidal neurons was examined with simultaneous somatic and dendritic patch-pipette recording and calcium imaging experiments. Action potentials are initiated close to the soma of these neurons and backpropagate into the dendrites in an activity-dependent manner; those occurring early in a train propagate actively, whereas those occurring later fail to actively invade the distal dendrites. Consistent with this finding, dendritic calcium transients evoked by single action potentials do not significantly attenuate with distance from the soma, whereas those evoked by trains attenuate substantially. Failure of action potential propagation into the distal dendrites often occurs at branch points. Consequently, neighboring regions of the dendritic tree can experience different voltage and calcium signals during repetitive action potential firing. The influence of backpropagating action potentials on synaptic integration and plasticity will therefore depend on both the extent of dendritic branching and the pattern of neuronal activity.
Simultaneous whole‐cell voltage and Ca2+ fluorescence measurements were made from the distal apical dendrites and the soma of thick tufted pyramidal neurons in layer 5 of 4‐week‐old (P28–32) rat neocortex slices to investigate whether activation of distal synaptic inputs can initiate regenerative responses in dendrites. Dual whole‐cell voltage recordings from the distal apical trunk and primary tuft branches (540–940 μm distal to the soma) showed that distal synaptic stimulation (upper layer 2) evoking a subthreshold depolarization at the soma could initiate regenerative potentials in distal branches of the apical tuft which were either graded or all‐or‐none. These regenerative potentials did not propagate actively to the soma and axon. Calcium fluorescence measurements along the apical dendrites indicated that the regenerative potentials were associated with a transient increase in the concentration of intracellular free calcium ([Ca2+]i) restricted to distal dendrites. Cadmium added to the bath solution blocked both the all‐or‐none dendritic regenerative potentials and local dendritic [Ca2+]i transients evoked by distal dendritic current injection. Thus, the regenerative potentials in distal dendrites represent local Ca2+ action potentials. Initiation of distal Ca2+ action potentials by a synaptic stimulus required coactivation of AMPA‐ and NMDA‐type glutamate receptor channels. It is concluded that in neocortical layer 5 pyramidal neurons of P28–32 animals glutamatergic synaptic inputs to the distal apical dendrites can be amplified via local Ca2+ action potentials which do not reach threshold for axonal AP initiation. As amplification of distal excitatory synaptic input is associated with a localized increase in [Ca2+]i these Ca2+ action potentials could control the synaptic efficacy of the distal cortico‐cortical inputs to layer 5 pyramidal neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.