ABSTRACT:The effect of fiber surface pretreatment on the interfacial strength and mechanical properties of wood fiber/polypropylene (WF/PP) composites are investigated. The results demonstrate that fiber surface conditions significantly influence the fiber-matrix interfacial bond, which, in turn, determines the mechanical properties of the composites. The WF/PP composite containing fibers pretreated with an acid-silane aqueous solution exhibits the highest tensile properties among the materials studied. This observation is a direct result of the strong interfacial bond caused by the acid/ water condition used in the fiber pretreatment. Evidence from coupling chemistry, rheological and electron microscopic studies support the above conclusion. When SEBSg-MA copolymer is used, a synergistic toughening effect between the wood fiber and the copolymer is observed. The V-notch Charpy impact strength of the WF/PP/SEBS-g-MA composite is substantially higher than that of the WF/PP composite. The synergistic toughening mechanisms are discussed with respect to the interfacial bond strength, fiber-matrix debonding, and matrix plastic deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.