BackgroundVaricocele (VC) is present in 35 - 40% of men with infertility. However, current surgical and antioxidant treatments are not completely effective. In addition to oxidative stress, it is likely that other factors such as testicular immune microenvironment disorder contribute to irreversible testicular. Evidence suggests that VC is associated with anti-sperm antibodies (ASAs), spermatogenesis and testosterone secretion abnormalities, and testicular cytokine production. Moreover, inhibition of inflammation can alleviate VC-mediated pathogenesis. The normal function of the testis depends on its immune tolerance mechanism. Testicular immune regulation is complex, and many infectious or non-infectious diseases may damage this precision system.ResultsThe testicular immune microenvironment is composed of common immune cells and other cells involved in testicular immunity. The former includes testicular macrophages, T cells, dendritic cells (DCs), and mast cells, whereas the latter include Leydig cells and Sertoli cells (SCs). In animal models and in patients with VC, most studies have revealed an abnormal increase in the levels of ASAs and pro-inflammatory cytokines such as interleukin (IL)-1 and tumor necrosis factor (TNF)-alpha in the seminal plasma, testicular tissue, and even peripheral blood. It is also involved in the activation of potential inflammatory pathways, such as the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing (NLRP)-3 pathway. Finally, the development of VC-mediated infertility (VMI) may be facilitated by abnormal permeability of proteins, such as claudin-11, that constitute the blood-testis barrier (BTB).ConclusionsThe testicular immune response, including the production of ASAs and inflammatory factors, activation of inflammatory pathways, and destruction of the BTB may be involved in the pathogenesis of VMI it is necessary to further explore how patient outcomes can be improved through immunotherapy.
Gamete abnormalities and reproductive system tumors have become a dominant cause of infertility, troubling people globally. In recent years, increasing evidence emerged and found that N6-methyladenosine (m6A) played a leading role in reproduction. The biological effects of m6A modification are dynamically and reversibly regulated by methyltransferases (writers), WTAP, METTL3, METTL14 and KIAA1429, demethylases (erasers), FTO and ALKBH5, and m6A binding proteins (readers), including YTH domain. In this review, we highlight the change of m6A modification in abnormal oogenesis, female reproductive system diseases including reproductive system tumors, adenomyosis, endometriosis, premature ovarian failure and polycystic ovary syndrome. Moreover, we review some of the mechanisms and the specific modified genes that have been identified. Especially, with the underlying mechanisms being uncovered, m6A and its protein machineries are expected to be the markers and targets for the diagnosis and treatment of female reproductive dysfunction.
This paper presents SEQMRAN, a novel secure efficient QoS multicast route discovery protocol for mobile ad hoc networks. The protocol relies entirely on a new one-time signature mechanism, HORSEI, with very efficient signing and verifying, and we do this by improving the HORSE protocol through the introduction of intermediate hash joints. The main purpose of SEQMRAN is to provide source authentication for QoS multicast routing discovery messages in MANET by constructing multicast tree with QoS and authentication constrains in mobile ad hoc networks. The performance measure of SEQMRAN is evaluated using network simulator NS2. The results represent that SEQMRAN produces less end-to-end packet latency than RSA public key encryption based secure routing scheme, and it is a feasible approach to securing multicast routing with multiple QoS constrains for mobile ad hoc networks.
Coronavirus disease 2019 (COVID-2019) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been an ongoing pandemic and worldwide public health emergency, having drawn a lot of attention around the world. The pathogenesis of COVID-19 is characterized by infecting angiotensin-converting enzyme 2 (ACE2)-expressing cells, including testis-specific cells, namely, Leydig, Sertoli, and spermatogenic cells, which are closely related to male reproduction. This leads to aberrant hyperactivation of the immune system generating damage to the infected organs. An impairment in testicular function through uncontrolled immune responses alerts more attention to male infertility. Meanwhile, the recent clinical data indicate that the infection of the human testis with SARS-CoV-2 may impair male germ cell development, leading to germ cell loss and higher immune cell infiltration. In this review, we investigated the evidence of male reproductive dysfunction associated with the infection with SARS-CoV-2 and its possible immunological explanations and clinical remedies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.