Carbon nanotubes (CNTs), dispersed in absolute ethanol, were evenly mixed into Ti/MgH2 powders by wet milling. Then, we applied the vacuum hot-pressed sinteringmethod to the CNTs/TiMg composite materials. An optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and a field emission scanning electron microscope (FESEM) were used for the microstructure observation and phase analysis of samples. The mechanical properties were measured via the micro-vickers hardness. The results show that the main phases in the composites were Ti, Mg and C. Meanwhile, a small amount of Ti-Mg solid solution phase was also found. The cross-section morphology of the composites shows that the melted magnesium fills the grain interface during extrusion and that the composites have a better compactness.The microstructures of the composites have been greatly refined as the CNT contents increased. The structure of the composites was further refined when 0.5 wt.% CNTs were added. The fracture surface is obviously a ductile fracture. The microhardness increases obviously with the CNT content increasing. When the content of the CNTs is 1.0 wt.%, the microhardness of the composites reaches 232 HV, which is 24% higher than that of the matrix.
The formation and growth kinetics of the reverted austenite during tempering in 13Cr supermartensitic stainless steel were investigated by a combination X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) in a scanning electron microscope (SEM). The reverted austenite precipitated at the martensite blocks, sub-blocks, laths and grain boundaries. The growth kinetics was established by Johnson-Mehl-Avrami (JAM) kinetics equation according to the volume fraction of the equilibrium reverted austenite at room temperature. The Avrami exponent value is 0.5, and the activation energy was estimated to be 369 kJ/mol, the kinetic model indicates that the mechanism of reverted austenite is diffusion-controlled and the growth of reverted austenite closely relies on the diffusion of the nickel (Ni) element. The experimental measured orientations of the reverted austenite are in good agreement with the theoretical ones, implying that the reverted austenite has the same orientation with the surrounding martensite, which meets the Kurdjumov–Sachs (K-S) orientation relationship. The orientation relationships minimize the strain energy of the phase transformation by reducing the crystallographic mismatch between phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.