This paper focuses on the problem of extracting the physical dynamic parameters which are fundamental for computing the positive-definite link mass matrix. To solve this problem, a minimal set of dynamic parameters were firstly identified by the standard least squares method. In order to simplify the dynamics model, a new set of essential dynamic parameters were calculated by eliminating the poorly identified parameters with an iterative approach. Based on these dynamic parameters with better identification quality, a universally global optimization framework was proposed here to retrieve the set of physical dynamic parameters of a serial robot, in which parameter bounds, linear and nonlinear constraints with physical consistency can be easily considered, such as the triangle inequality of the link inertia tensors, the total link mass limitations, other user-defined constraints and so on. Finally, validation experiments were conducted on the KUKA LBR iiwa 14 R820 robot. The results show that the proposed optimization framework is effective, and the identified dynamic parameters can predict the robot joint torques accurately for the validation trajectories. INDEX TERMS dynamic parameter identification, physical parameters, nonlinear global optimization, KUKA LBR iiwa robot.
A dynamic motion primitive (DMP) is a robust framework that generates obstacle avoidance trajectories by introducing perturbative terms. The perturbative term is usually constructed with an artificial potential field (APF) method.Dynamic obstacle avoidance is rarely considered with this approach; furthermore, even when dynamic obstacles are considered, only the velocity and position information of the current state are incorporated into the obstacle avoidance framework. However, if the position of an obstacle changes suddenly, a robot may be placed in a dangerous position close to the obstacle, resulting in large obstacle avoidance accelerations, sharp trajectories, or even obstacle avoidance failure. Therefore, we present a model predictive obstacle avoidance method based on dynamic motion primitives and a Kalman filter. This method has three main components: Dynamic motion primitives are used to generate the desired trajectory and introduce perturbations to achieve obstacle avoidance; the Kalman filter method is adopted to estimate the future positions of the obstacles; and model predictive control is employed to optimize the repulsive force generated by the APF while minimizing the defined cost function, thus guaranteeing the safety and flexibility of the method. We validate the presented method with 2D and 3D obstacle avoidance simulations. The method is also verified with a real robot: the-Kinova MOVO. The simulation and experimental results show that the proposed method not only avoids dynamic obstacles but also tracks the desired trajectory more smoothly and precisely. KEYWORDS artificial potential field (APF), dynamic motion primitive (DMP), dynamic obstacle avoidance, kalman filter, model predictive control (MPC)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.