Pine wilt disease is a devastating forest disaster caused by Bursaphelenchus xylophilus, which has brought inestimable economic losses to the world’s forestry due to lack of effective prevention and control measures. In this paper, a porous structure CuBTC was designed to deliver avermectin (AM) and a control vector insect Japanese pine sawyer (JPS) of B. xylophilus, which can improve the biocompatibility, anti-photolysis and delivery efficacy of AM. The results illustrated the cumulative release of pH-dependent AM@CuBTC was up to 12 days (91.9%), and also effectively avoided photodegradation (pH 9.0, 120 h, retention 69.4%). From the traceable monitoring experiment, the AM@CuBTC easily penetrated the body wall of the JPS larvae and was transmitted to tissue cells though contact and diffusion. Furthermore, AM@CuBTC can effectively enhance the cytotoxicity and utilization of AM, which provides valuable research value for the application of typical plant-derived nerve agents in the prevention and control of forestry pests. AM@CuBTC as an environmentally friendly nanopesticide can efficiently deliver AM to the larval intestines where it is absorbed by the larvae. AM@CuBTC can be transmitted to the epidemic wood and dead wood at a low concentration (10 mg/L).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.