In the gastric carcinogenesis, H.pylori might cause the severe imbalance of proliferation and apoptosis in the precancerous lesions (IMIII and GysIII) first, leading to p53-Rb tumor-suppressor system mutation and telomerase reactivation, and finally causes gastric cancer.
Astragalus mongholicus is a widely used Traditional Chinese Medicine. However, cultivated A. mongholicus is often threatened by water shortage at all growth stage, and the content of medicinal compounds of cultivated A. mongholicus is much lower than that of wild plants. To alleviate drought stress on A. mongholicus and improve the accumulation of medicinal components in roots of A. mongholicus, we combined different bacteria with plant growth promotion or abiotic stress resistance characteristics and evaluated the role of bacterial consortium in helping plants tolerate drought stress and improving medicinal component content in roots simultaneously. Through the determination of 429 bacterial strains, it was found that 97 isolates had phosphate solubilizing ability, 63 isolates could release potassium from potash feldspar, 123 isolates could produce IAA, 58 isolates could synthesize ACC deaminase, and 21 isolates could secret siderophore. Eight bacterial consortia were constructed with 25 bacterial isolates with more than three functions or strong growth promoting ability, and six out of eight bacterial consortia significantly improved the root dry weight. However, only consortium 6 could increase the root biomass, astragaloside IV and calycosin-7-glucoside content in roots simultaneously. Under drought challenge, the consortium 6 could still perform these functions. Compared with non-inoculated plants, the root dry weight of consortium inoculated-plants increased by 120.0% and 78.8% under mild and moderate drought stress, the total content of astragaloside IV increased by 183.83% and 164.97% under moderate and severe drought stress, calycosin-7-glucoside content increased by 86.60%, 148.56% and 111.45% under mild, moderate and severe drought stress, respectively. Meanwhile, consortium inoculation resulted in a decrease in MDA level, while soluble protein and proline content and SOD, POD and CAT activities increased. These findings provide novel insights about multiple bacterial combinations to improve drought stress responses and contribute to accumulate more medicinal compounds.
Background: Irritable bowel syndrome needs long-term neuroscience detection after medical engineering modeling, during which time, computer engineering is needed to complete database collection. Research methods: The research team designed this model after constructing the illusion of intervention on different sweeteners and sugars. At the same time, the artificial intelligence neural system combined with data to predict which combination of sweeteners and sugars is likely to cause disease, which combination of sugar and glycogen may lead to irritable bowel syndrome in patients, and elaborate the neural network mechanism from the perspective of calculation. Results: Through experimental data processing and analysis, the research team completed the design of the model and established a complete computer network path. Conclusion: The model can be popularized in Europe, Russia, Belarus, China, Malaysia and other regions. After cooperation with Chifeng University, supported by the Autonomous University of Barcelona in Spain and the National University of Belarus, a more in-depth comparative experiment will be carried out to find a more accurate molecular mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.