The highly conserved protein gamma-tubulin is required for microtubule nucleation in vivo. When viewed in the electron microscope, a highly purified gamma-tubulin complex from Xenopus consisting of at least seven different proteins is seen to have an open ring structure. This complex acts as an active microtubule-nucleating unit which can cap the minus ends of microtubules in vitro.
γ-tubulin exists in two related complexes in Drosophila embryo extracts (Moritz, M., Y. Zheng, B.M. Alberts, and K. Oegema. 1998. J. Cell Biol. 142:1– 12). Here, we report the purification and characterization of both complexes that we name γ-tubulin small complex (γTuSC; ∼280,000 D) and Drosophila γTuRC (∼2,200,000 D). In addition to γ-tubulin, the γTuSC contains Dgrip84 and Dgrip91, two proteins homologous to the Spc97/98p protein family. The γTuSC is a structural subunit of the γTuRC, a larger complex containing about six additional polypeptides. Like the γTuRC isolated from Xenopus egg extracts (Zheng, Y., M.L. Wong, B. Alberts, and T. Mitchison. 1995. Nature. 378:578–583), the Drosophila γTuRC can nucleate microtubules in vitro and has an open ring structure with a diameter of 25 nm. Cryo-electron microscopy reveals a modular structure with ∼13 radially arranged structural repeats. The γTuSC also nucleates microtubules, but much less efficiently than the γTuRC, suggesting that assembly into a larger complex enhances nucleating activity. Analysis of the nucleotide content of the γTuSC reveals that γ-tubulin binds preferentially to GDP over GTP, rendering γ-tubulin an unusual member of the tubulin superfamily.
Pericentrin and γ-tubulin are integral centrosome proteins that play a role in microtubule nucleation and organization. In this study, we examined the relationship between these proteins in the cytoplasm and at the centrosome. In extracts prepared from Xenopus eggs, the proteins were part of a large complex as demonstrated by sucrose gradient sedimentation, gel filtration and coimmunoprecipitation analysis. The pericentrin–γ-tubulin complex was distinct from the previously described γ-tubulin ring complex (γ-TuRC) as purified γ-TuRC fractions did not contain detectable pericentrin. When assembled at the centrosome, the two proteins remained in close proximity as shown by fluorescence resonance energy transfer. The three- dimensional organization of the centrosome-associated fraction of these proteins was determined using an improved immunofluorescence method. This analysis revealed a novel reticular lattice that was conserved from mammals to amphibians, and was organized independent of centrioles. The lattice changed dramatically during the cell cycle, enlarging from G1 until mitosis, then rapidly disassembling as cells exited mitosis. In cells colabeled to detect centrosomes and nucleated microtubules, lattice elements appeared to contact the minus ends of nucleated microtubules. Our results indicate that pericentrin and γ-tubulin assemble into a unique centrosome lattice that represents the higher-order organization of microtubule nucleating sites at the centrosome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.