Sulfide was used as an electron donor early in the evolution of photosynthesis, with many extant photosynthetic bacteria still capable of using sulfur compounds such as hydrogen sulfide (H 2 S) as a photosynthetic electron donor. Although enzymes involved in H 2 S oxidation have been characterized, mechanisms of regulation of sulfide-dependent photosynthesis have not been elucidated. In this study, we have identified a sulfide-responsive transcriptional repressor, SqrR, that functions as a master regulator of sulfide-dependent gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus. SqrR has three cysteine residues, two of which, C41 and C107, are conserved in SqrR homologs from other bacteria. Analysis with liquid chromatography coupled with an electrospray-interface tandem-mass spectrometer reveals that SqrR forms an intramolecular tetrasulfide bond between C41 and C107 when incubated with the sulfur donor glutathione persulfide. SqrR is oxidized in sulfidestressed cells, and tetrasulfide-cross-linked SqrR binds more weakly to a target promoter relative to unmodified SqrR. C41S and C107S R. capsulatus SqrRs lack the ability to respond to sulfide, and constitutively repress target gene expression in cells. These results establish that SqrR is a sensor of H 2 S-derived reactive sulfur species that maintain sulfide homeostasis in this photosynthetic bacterium and reveal the mechanism of sulfide-dependent transcriptional derepression of genes involved in sulfide metabolism.sulfide sensor | photosynthesis regulation | reactive sulfur species | purple bacteria | Rhodobacter T he discovery of ∼550 deep-sea hydrothermal vents more than 30 y ago (1) has led to the theory that energy metabolism in early ancestral organisms may have arisen from deep-sea hydrothermal vents where simple inorganic molecules such as hydrogen sulfide or hydrogen gas, as well as methane, exist (2-4). Such ancient energy metabolism has been assumed to be similar to that of extant chemolithotrophs, which obtain energy from these molecules. Indeed, various chemolithoautotrophic microbes thrive in deep-sea hydrothermal vents and are capable of oxidizing sulfides, methane, and/or hydrogen gas for use as energy sources and electron donors (5). Some photosynthetic bacteria have also been isolated from deep-sea hydrothermal vents that can grow photosynthetically using sulfide as an electron donor and geothermal radiation as an energy source instead of solar radiation (6), as hypothesized for ancestral phototrophs.Many purple photosynthetic bacteria have remarkable metabolic versatility required to meet the energy demands of sulfidedependent and -independent photosynthesis as well as aerobic and anaerobic respiration. These bacteria tightly control the synthesis of their electron transfer proteins involved in each growth mode in response to a specific electron donor, oxygen tension, and light intensity (7, 8). Among these regulatory systems, oxygen-and lightsensing mechanisms have been well-studied; however, mechanisms used to sen...
Gastrointestinal stromal tumors (GISTs) are usually driven by mutations in KIT or PDGFRA, although 15% of GISTs in adults and 490% in children lack such mutations. The majority of gastric KIT/PDGFRA wild-type GISTs show distinctive morphological and clinical features and loss of expression of succinate dehydrogenase (SDH) B. Only a small subset of SDHB-deficient GISTs carries loss-of-function mutations in SDHB, SDHC, or SDHD. Because of the complexity of its locus (15 exons) and the presence of three pseudogenes, SDHA is rarely analyzed. Recently, mutations in SDHA were shown to lead to loss of expression of SDHA in a small group of paragangliomas. We sought to determine whether immunohistochemistry for SDHA could identify GISTs with SDHA mutations. Tumors (n ¼ 33) with pathological features of SDH-deficient GIST were analyzed for expression of SDHA and SDHB by immunohistochemistry, and SDHA exons were sequenced from tumors lacking SDHA expression. Exons harboring somatic mutations were examined in DNA from corresponding normal tissue. All 33 tumors showed loss of SDHB expression. A total of 9 out of 33 (27%) tumors also lacked expression of SDHA. SDHA-deficient GISTs affected five men and four women (median age 38 years). SDHA expression was intact in the 24 remaining tumors, including those with known SDHB (n ¼ 3) or SDHC (n ¼ 2) mutations. Nonsense (n ¼ 8) or missense (n ¼ 1) mutations in SDHA were identified in all SDHA-deficient tumors. Heterozygous mutations were also found in DNA from normal tissues from six patients with available material. Somatic loss of the second allele has been found in seven tumors, five by loss of heterozygosity, one by a 13-bp deletion, and one by a missense mutation. Loss of SDHA expression in GIST reliably predicts the presence of SDHA mutations, which represent a relatively common cause of SDH-deficient GIST in adults. Immunohistochemistry for SDHA can be used to select patients for SDHA-specific genetic testing.
HighlightUnder darkness, JAZ7 was up-regulated and the mutant showed a severe leaf senescence phenotype. Genetics and transcriptomic analysis revealed JAZ7 as an important regulator of dark-induced leaf senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.