Enhancing photosynthetic capacity is widely accepted as critical to advancing crop yield. Therefore, identifying photosynthetic parameters positively related to biomass accumulation in elite cultivars is the major focus of current rice research. In this work, we assessed leaf photosynthetic performance, canopy photosynthesis, and yield attributes of super hybrid rice cultivars Y-liangyou 3218 (YLY3218) and Y-liangyou 5867 (YLY5867) at tillering stage and flowering stage, using inbred super rice cultivars Zhendao11(ZD11) and Nanjing 9108 (NJ9108) as control. A diurnal canopy photosynthesis model was applied to estimate the influence of key environmental factors, canopy attributes, and canopy nitrogen status on daily aboveground biomass increment (AMDAY). Results showed that primarily the light-saturated photosynthetic rate at tillering stage contributed to the advancing yield and biomass of super hybrid rice in comparison to inbred super rice, and the light-saturated photosynthetic rate between them was similar at flowering stage. At tillering stage, the higher CO2 diffusion capacity, together with higher biochemical capacity (i.e., maximum carboxylation rate of Rubisco, maximum electron transport rate (Jmax), and triose phosphate utilization rate) favored leaf photosynthesis of super hybrid rice. Similarly, AMDAY in super hybrid rice was higher than inbred super rice at tillering stage, and comparable at flowering stage partially due to increased canopy nitrogen concentration (SLNave) of inbred super rice. At tillering stage, model simulation revealed that replacement of Jmax and gm in inbred super rice by super hybrid rice always had a positive effect on AMDAY, and the averaged AMDAY increment was 5.7% and 3.4%, respectively. Simultaneously, the 20% enhancement of total canopy nitrogen concentration through the improvement of SLNave (TNC-SLNave) resulted in the highest AMDAY across cultivars, with an average increase of 11.2%. In conclusion, the advancing yield performance of YLY3218 and YLY5867 was due to the higher Jmax and gm at tillering stage, and TCN-SLNave is a promising target for future super rice breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.