Two-dimensional (2D) perovskites are emerging photovoltaic materials because of their highly tunable photophysical properties and improved environmental stability in comparison with 3D perovskites. Here, a thiophene-based bulky dication spacer, namely, 2,5-thiophenedimethylammonium (ThDMA), was developed and applicated in 2D Dion–Jacobson (DJ) perovskite. High-quality 2D DJ perovskite, (ThDMA)(MA) n–1Pb n I3n+1 (nominal n = 5), with improved crystallinity, preferred vertical orientation, and enlarged spatially resolved carrier lifetime could be achieved by a one-step method using a mixed solvent of DMF/DMSO (v/v, 9:1). The optimized device exhibits a high efficiency of 15.75%, which is a record for aromatic spacer-based 2D DJ perovskite solar cells (PSCs). Moreover, the unencapsulated 2D DJ perovskite devices sustained over 95% of their original efficiency after storage in N2 for 1655 h. Importantly, both the light-soaking stability and thermal stability (T = 80 °C) of the 2D DJ perovksite devices are dramatically improved in comparison with their 3D counterparts. These results indicate that highly efficient and stable 2D DJ PSCs could be achieved by developing thiophene-based aromatic spacers as well as device engineering.
Ultraviolet‐B (UV‐B) radiation and low temperature promote the accumulation of anthocyanins, which give apple skins their red colour. Although many transcription regulators have been characterized in the UV‐B and low‐temperature pathways, their interregulation and synergistic effects are not well understood. Here, a B‐box transcription factor gene, MdBBX20, was characterized in apple and identified to promote anthocyanin biosynthesis under UV‐B conditions in field experiments and when overexpressed in transgenic apple calli. The transcript level of MdBBX20 was significantly induced by UV‐B. Specific G‐box elements in the promoters of target genes were identified as interaction sites for MdBBX20. Further experimental interrogation of the UV‐B signalling pathways showed that MdBBX20 could interact with MdHY5 in vitro and in vivo and that this interaction was required to significantly enhance the promoter activity of MdMYB1. MdBBX20 also responded to low temperature (14°C) with the participation of MdbHLH3, which directly bound a low temperature‐response cis elements in the MdBBX20 promoter. These findings demonstrate the molecular mechanism by which MdBBX20 integrates low‐temperature‐ and UV‐B‐induced anthocyanin accumulation in apple skin.
Formamidinium (FA)‐based 3D perovskite solar cells (PSCs) have been widely studied and they show reduced bandgap, enhanced stability, and improved efficiency compared to MAPbI3‐based devices. Nevertheless, the FA‐based spacers have rarely been studied for 2D Ruddlesden–Popper (RP) perovskites, which have drawn wide attention due to their enormous potential for fabricating efficient and stable photovoltaic devices. Here, for the first time, FA‐based derivative, 2‐thiopheneformamidinium (ThFA), is successfully synthesized and employed as an organic spacer for 2D RP PSCs. A precursor organic salts‐assisted crystal growth technique is further developed to prepare high quality 2D (ThFA)2(MA)n−1PbnI3n+1 (nominal n = 3) perovskite films, which shows preferential vertical growth orientations, high charge carrier mobilities, and reduced trap density. As a result, the 2D RP PSCs with an inverted planar p‐i‐n structure exhibit a dramatically improved power conversion efficiency (PCE) from 7.23% to 16.72% with negligible hysteresis, which is among the highest PCE in 2D RP PSCs with low nominal n‐value of 3. Importantly, the optimized 2D PSCs exhibit a dramatically improved stability with less than 1% degradation after storage in N2 for 3000 h without encapsulation. These findings provide an effective strategy for developing FA‐based organic spacers toward highly efficient and stable 2D PSCs.
Layered two-dimensional (2D) perovskites are emerging photovoltaic materials due to their good environmental and structural stability thanks to the bulky organic spacers incorporated in the crystal lattice. Formamidine (FA) is an indispensable organic cation in high-performance 3D perovskite materials, whereas FA derivative-based spacers have remained largely unexplored in 2D perovskite. Here, we demonstrated a class of aromatic formamidinium (ArFA) spacers, namely, benzamidine (PhFA) and para-fluorobenzamidine (p-FPhFA), for efficient 2D Ruddlesden–Popper (RP) perovskite solar cells. It is found that the 2D perovskite with the fluorinated spacer p-FPhFA shows significantly improved charge carrier lifetime, enhanced mobility, and reduced trap density in comparison with an unfluorinated PhFA spacer. As a result, the p-FPhFA-based 2D perovskite (n = 5) device yields a champion efficiency of 17.37%, which is much higher than that of the PhFA-Pb device (12.92%), representing a record value for 2D PSCs with FA-based spacers. These results highlight the great potential of ArFA spacers, especially the fluorinated ArFA spacer, for high-performance 2D perovskite solar cells.
Genes SNO1 and SNZ1 are Saccharomyces cerevisiae homologues of PDX2 and PDX1 which participate in pyridoxine synthesis in the fungus Cercospora nicotianae. In order to clarify their function, the two genes SNO1 and SNZ1 were expressed in Escherichia coli either individually or simultaneously and with or without a His-tag. When expressed simultaneously, the two protein products formed a complex and showed glutaminase activity. When purified to homogeneity, the complex exhibited a specific activity of 480 nmolAEmg )1 AEmin)1 as glutaminase, with a K m of 3.4 mM for glutamine. These values are comparable to those for other glutamine amidotransferases. In addition, the glutaminase activity was impaired by 6-diazo-5-oxo-L-norleucine in a time-and dose-dependent manner and the enzyme was protected from deactivation by glutamine. These data suggest strongly that the complex of Sno1p and Snz1p is a glutamine amidotransferase with the former serving as the glutaminase, although the activity was barely detectable with Sno1p alone. The function of Snz1p and the amido acceptor for ammonia remain to be identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.