In this paper, we investigate a novel deep-model reusing task. Our goal is to train a lightweight and versatile student model, without human-labelled annotations, that amalgamates the knowledge and masters the expertise of two pretrained teacher models working on heterogeneous problems, one on scene parsing and the other on depth estimation. To this end, we propose an innovative training strategy that learns the parameters of the student intertwined with the teachers, achieved by "projecting" its amalgamated features onto each teacher's domain and computing the loss. We also introduce two options to generalize the proposed training strategy to handle three or more tasks simultaneously. The proposed scheme yields very encouraging results. As demonstrated on several benchmarks, the trained student model achieves results even superior to those of the teachers in their own expertise domains and on par with the state-of-the-art fully supervised models relying on human-labelled annotations.
Brain functional networks (BFNs) constructed via manifold regularization (MR) have emerged as a powerful tool in finding new biomarkers for brain disease diagnosis. However, they only describe the pair-wise relationship between two brain regions, and cannot describe the functional interaction between multiple brain regions, or the high-order relationship, well. To solve this issue, we propose a method to construct dynamic BFNs (DBFNs) via hyper-graph MR (HMR) and employ it to classify mild cognitive impairment (MCI) subjects. First, we construct DBFNs via Pearson’s correlation (PC) method and remodel the PC method as an optimization model. Then, we use k-nearest neighbor (KNN) algorithm to construct the hyper-graph and obtain the hyper-graph manifold regularizer based on the hyper-graph. We introduce the hyper-graph manifold regularizer and the L1-norm regularizer into the PC-based optimization model to optimize DBFNs and obtain the final sparse DBFNs (SDBFNs). Finally, we conduct classification experiments to classify MCI subjects from normal subjects to verify the effectiveness of our method. Experimental results show that the proposed method achieves better classification performance compared with other state-of-the-art methods, and the classification accuracy (ACC), the sensitivity (SEN), the specificity (SPE), and the area under the curve (AUC) reach 82.4946 ± 0.2827%, 77.2473 ± 0.5747%, 87.7419 ± 0.2286%, and 0.9021 ± 0.0007, respectively. This method expands the MR method and DBFNs with more biological significance. It can effectively improve the classification performance of DBFNs for MCI, and has certain reference value for the research and auxiliary diagnosis of Alzheimer’s disease (AD).
Recent advances in deep learning have provided procedures for learning one network to amalgamate multiple streams of knowledge from the pre-trained Convolutional Neural Network (CNN) models, thus reduce the annotation cost. However, almost all existing methods demand massive training data, which may be unavailable due to privacy or transmission issues. In this paper, we propose a datafree knowledge amalgamate strategy to craft a well-behaved multi-task student network from multiple single/multi-task teachers. The main idea is to construct the group-stack generative adversarial networks (GANs) which have two dual generators. First one generator is trained to collect the knowledge by reconstructing the images approximating the original dataset utilized for pre-training the teachers. Then a dual generator is trained by taking the output from the former generator as input. Finally we treat the dual part generator as the target network and regroup it. As demonstrated on several benchmarks of multi-label classification, the proposed method without any training data achieves the surprisingly competitive results, even compared with some full-supervised methods.
Many well-trained Convolutional Neural Network (CNN) models have now been released online by developers for the sake of effortless reproducing. In this paper, we treat such pre-trained networks as teachers, and explore how to learn a target student network for customized tasks, using multiple teachers that handle different tasks. We assume no human-labelled annotations are available, and each teacher model can be either single-or multitask network, where the former is a degenerated case of the latter. The student model, depending on the customized tasks, learns the related knowledge filtered from the multiple teachers, and eventually masters the complete or a subset of expertise from all teachers. To this end, we adopt a layer-wise training strategy, which entangles the student's network block to be learned with the corresponding teachers. As demonstrated on several benchmarks, the learned student network achieves very promising results, even outperforming the teachers on the customized tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.