Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes (T2D). Previous report showed that an immunomodulator FTY720, a sphingosine 1-phosphate (S1P) receptor modulator, sustainably normalized hyperglycemia by stimulating β-cell in vivo regeneration in db/db mice. We further examined the effects of FTY720 on glucose homeostasis and diabetic complications in a translational nonhuman primate (NHP) model of spontaneously developed diabetes. The male diabetic cynomolgus macaques of 18-19 year old were randomly divided into Vehicle (Purified water, n = 5) and FTY720 (5 mg/kg, n = 7) groups with oral gavage once daily for 10 weeks followed by 10 weeks drug free period. Compared with the Vehicle group, FTY720 effectively lowered HbA1c, blood concentrations of fasting glucose (FBG) and insulin, hence, decreased homeostatic model assessment of insulin resistance (HOMA-IR); ameliorated glucose intolerance and restored glucose-stimulated insulin release, indicating rejuvenation of β-cell function in diabetic NHPs. Importantly, after withdrawal of FTY720, FBG, and HbA1c remained at low level in the drug free period. Echocardiography revealed that FTY720 significantly reduced proteinuria and improved cardiac left ventricular systolic function measured by increased ejection fraction and fractional shortening in the diabetic NHPs. Finally, flow cytometry analysis (FACS) detected that FTY720 significantly reduced CD4 + and CD8 + T lymphocytes as well as increased DC cells in
Background Cardiorenal complications are common in patients with dysmetabolism and diabetes. The present study aimed to examine if a nonhuman primate (NHP) model with spontaneously developed metabolic disorder and diabetes develops similar complications to humans, such as proteinuria and cardiac dysfunction at resting condition or diminished cardiac functional reserve following dobutamine stress echocardiography (DSE).Methods and Results A total of 66 dysmetabolic and diabetic cynomolgus (Macaca fascicularis) NHPs were enrolled to select 19 NHPs (MetS) with marked metabolic disorders and diabetes (fasting blood glucose: 178+18 vs. 61+3 mg/dL) accompanied by proteinuria (ACR: 134+34 vs. 1.5+0.4 mg/mmol) compared to 8 normal NHPs (CTRL). Under resting condition, MetS NHPs showed mild left ventricular (LV) diastolic dysfunction (E/A: 1+0.06 vs. 1.5+0.13), but with preserved ejection fraction (EF: 65+2 vs. 71+3%) compared to CTRL. DSE with an intravenous infusion of dobutamine at ascending doses (5, 10, 20, 30 and 40 μg/kg/min, 7 min for each dose) resulted in a dose-dependent increase in cardiac function, however, with a significantly diminished magnitude at the highest dose of dobutamine infusion (40 μg/kg/min) in both diastole (E/A: -12+3 vs. -38+5%) and systole (EF: 25+3 vs. 33+5%) as well as ~42% reduced cardiac output reserve (COR: 63+8 vs. 105+18%, p<0.02) in the MetS compared to CTRL NHPs.Conclusion These data demonstrate that MetS NHPs with cardiorenal complications: proteinuria, LV diastolic dysfunction and preserved LV systolic function under resting conditions displayed compromised cardiac functional reserve under dobutamine stress. Based on these phenotypes, this NHP model of diabetes with cardiorenal complications can be used as a highly translational model mimic human disease for pharmaceutical research.
Background: Multiple murine models of nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) have been established by using obesogenic diets and/or chemical induction. MS-NASH mouse (formally FATZO) is a spontaneously developed dysmetabolic strain that can progress from hepatosteatosis to moderate fibrosis when fed a western diet supplemented with 5% fructose (WDF). This study aimed to use carbon tetrachloride (CCl4) to accelerate and aggravate progression of NAFLD/NASH in MS-NASH mouse. Methods: Male MS-NASH mice at 8 weeks of age were fed WDF for the entire study. Starting at 16 weeks of age, CCl4 was intraperitoneally administered twice weekly at a dose of 0.2 mL/kg for 3 weeks or 0.08 mL/kg for 8 weeks. Obeticholic acid (OCA, 30 mg/kg, QD) was administered in both MS-NASH and C57Bl/6 mice fed WDF and treated with CCl4 (0.08 mL/kg).Results: WDF enhanced obesity and hepatosteatosis, as well as induced moderate fibrosis in MS-NASH mice similar to previous reports. Administration of CCl4 accelerated liver fibrosis with increased bridging and liver hydroxyproline contents, but had no significant impact on liver steatosis and lipid contents. High dose CCl4 caused high mortality and dramatic elevation of ALT and ASL, while low dose CCl4 resulted in a moderate elevation of ALT and AST with low mortality. Compared to C57BI/6 mice with WDF and CCl4 (0.08 mL/kg), MS-NASH mice had more prominent hepatosteatosis and fibrosis. OCA treatment significantly lowered liver triglycerides, steatosis and fibrosis in both MS-NASH and C57Bl/6 mice fed WDF with CCl4 treatment. Conclusions: CCl4 reduced induction time and exacerbated liver fibrosis in MS-NASH mice on WDF, proving a superior NASH model with more prominent liver pathology, which has been used favorably in pharmaceutical industry for testing novel NASH therapeutics.
Background Multiple NAFLD/NASH murine models have been developed by obesogenic diets and/or chemical induction. MS-NASH (formally FATZO) mouse is a spontaneously developed dysmetabolic strain that can progress from hepatosteatosis to moderate fibrosis when fed western diet supplemented with 5% fructose (WDF). This study aimed to use carbon tetrachloride (CCl4) to accelerate and aggravate progression of NAFLD/NASH in MS-NASH mouse. Methods Male MS-NASH mice at 8 weeks of age were fed WDF for the entire study. Starting at 16 weeks of age, CCl4 was intraperitoneally administrated twice weekly at a dose of 0.2 mL/kg for 3 weeks or 0.08 mL/kg for 8 weeks. Obeticholic acid (OCA, 30 mg/kg, QD) was administered in both MS-NASH and C57Bl/6 mice fed WDF and treated with CCl4 (0.08 mL/kg). Results WDF enhanced obesity and hepatosteatosis, as well as induced moderate fibrosis in MS-NASH mice similar to that reported previously. Administration of CCl4 accelerated liver fibrosis with increased bridging, but no significant impact on liver steatosis and lipid contents. Compared to the high dose CCl4 at 0.2 mL/kg, the lower dose of 0.08 mL/kg caused less death and smaller elevation of ALT and AST. Compared to MS-NASH mice, C57BI/6 mice with WDF and CCl4 (0.08 mL/kg) resulted in milder hepatosteatosis and fibrosis. OCA treatment significantly lowered liver triglycerides, steatosis and fibrosis in both MS-NASH and C57Bl/6 mice treated with WDF and CCl4. Conclusions CCl4 reduced induction time and exacerbated the fibrosis in MS-NASH mice on WDF, which, thus, becomes a superior NASH model with more prominent liver pathology used favorably in pharmaceutical industry for testing novel therapeutics targeting NASH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.