Feature selection is a crucial method for discovering relevant features in high-dimensional data. However, most studies primarily focus on completely labeled data, ignoring the frequent occurrence of missing labels in real-world problems. To address high-dimensional and label-missing problems in data classification simultaneously, we proposed a semisupervised bacterial heuristic feature selection algorithm. To track the label-missing problem, a k-nearest neighbor semisupervised learning strategy is designed to reconstruct missing labels. In addition, the bacterial heuristic algorithm is improved using hierarchical population initialization, dynamic learning, and elite population evolution strategies to enhance the search capacity for various feature combinations. To verify the effectiveness of the proposed algorithm, three groups of comparison experiments based on eight datasets are employed, including two traditional feature selection methods, four bacterial heuristic feature selection algorithms, and two swarm-based heuristic feature selection algorithms. Experimental results demonstrate that the proposed algorithm has obvious advantages in terms of classification accuracy and selected feature numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.