On-demand ride-sharing services such as Uber and Lyft have gained tremendous popularity over the past decade, largely driven by the omnipresence of mobile devices. Ride-sharing services can provide economic and environmental benefits such as reducing traffic congestion and vehicle emissions. Multi-hop ride-sharing enables passengers to transfer between vehicles within a single trip, which significantly extends the benefits of ride-sharing and provides ride opportunities that are not possible otherwise. Despite its advantages, offering real-time multi-hop ride-sharing services at large scale is a challenging computational task due to the large combination of vehicles and passenger transfer points. To address these challenges, we propose exact and approximation algorithms that are scalable and achieve real-time responses for highly dynamic ride-sharing scenarios in large metropolitan areas. Our experiments on real-world datasets show the benefits of multi-hop ride-sharing services and demonstrate that our proposed algorithms are more than two orders of magnitude faster than the state-of-the-art. Our approximation algorithms offer a comparable trip quality to our exact algorithm, while improving the ride-sharing request matching time by another order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.