We previously showed that injury by partial duct ligation (PDL) in adult mouse pancreas activates Neurogenin 3 (Ngn3)+ progenitor cells that can differentiate to β cells ex vivo. Here we evaluate the role of Ngn3+ cells in β cell expansion in situ. PDL not only induced doubling of the β cell volume but also increased the total number of islets. β cells proliferated without extended delay (the so-called ‘refractory' period), their proliferation potential was highest in small islets, and 86% of the β cell expansion was attributable to proliferation of pre-existing β cells. At sufficiently high Ngn3 expression level, upto 14% of all β cells and 40% of small islet β cells derived from non-β cells. Moreover, β cell proliferation was blunted by a selective ablation of Ngn3+ cells but not by conditional knockout of Ngn3 in pre-existing β cells supporting a key role for Ngn3+ insulin− cells in β cell proliferation and expansion. We conclude that Ngn3+ cell-dependent proliferation of pre-existing and newly-formed β cells as well as reprogramming of non-β cells contribute to in vivo β cell expansion in the injured pancreas of adult mice.
Identifying pathways for b-cell generation is essential for cell therapy in diabetes. We investigated the potential of 17b-estradiol (E 2 ) and estrogen receptor (ER) signaling for stimulating b-cell generation during embryonic development and in the severely injured adult pancreas. E 2 concentration, ER activity, and number of ERa transcripts were enhanced in the pancreas injured by partial duct ligation (PDL) along with nuclear localization of ERa in b-cells. PDL-induced proliferation of b-cells depended on aromatase activity. The activation of Neurogenin3 (Ngn3) gene expression and b-cell growth in PDL pancreas were impaired when ERa was turned off chemically or genetically (ERa 2/2 ), whereas in situ delivery of E 2 promoted b-cell formation. In the embryonic pancreas, b-cell replication, number of Ngn3 + progenitor cells, and expression of key transcription factors of the endocrine lineage were decreased by ERa inactivation. The current study reveals that E 2 and ERa signaling can drive b-cell replication and formation in mouse pancreas.Decreased functional b-cell mass is the major cause for hyperglycemia in diabetes. Restoration of the endogenous b-cell mass as a therapeutic strategy, however, requires a better understanding of signaling pathways that control b-cell growth and differentiation. Embryonic b-cells are generated by a developmental program executed through the timed action of a number of key transcription factors among which Neurogenin3 (Ngn3) is key for endocrine specification. Ngn3 + cells delaminate from pancreatic epithelium, are mitotically quiescent, and give rise to endocrine cells. Ngn3 cells appear maximally competent for driving b-cell formation at embryonic day (E) 14.5. Formed b-cells expand through self-replication, already evident at E18.5, and continue into early postnatal life (1). Also in adult mice with severely injured pancreas by partial duct ligation (PDL), Ngn3 + cells are generated near duct epithelium and can differentiate into b-cells (2). b-Cells are vastly generated through replication in PDL (3,4), but some derive from acinar (5) and duct (6) cells, apparently through an Ngn3 + stage (2,5) as in embryonic pancreas. How the numbers of Ngn3 + endocrine progenitors and replicating b-cells are controlled in the embryonic or mature pancreas is uncertain. Identifying factors that control these processes and manipulating them may be of therapeutic advantage. What is known is that 17b-estradiol (E 2 ) enhances b-cell survival and glycemic control in various animal models (7,8) by signaling through estrogen receptor (ER) a (8,9) and/or ERb (10).However, little is known about the importance of estrogen and ER signaling for b-cell proliferation and differentiation. So far, no in vivo effects on b-cell formation have been reported for the ER antagonist tamoxifen (TAM), although this compound is used to conditionally activate Cre recombinase activity (Cre ERT ) in genetic
HIGHLIGHTSd b-catenin activation drives adrenal hyperplasia by blocking cellular differentiation d Upregulation of Pde2a, an inhibitor of cAMP/PKA, is a potential mechanism for the block d Hyperplasia is exacerbated by trophic factor stimulation leading to organomegaly
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.