Based on low-cost and easy to enlarge, the bubble column device has been widely concerned in chemical industry. This paper focuses on bubble plumes in laboratory-scale three-dimensional rectangular air-water columns. Static behavior has been investigated in many experiments and simulations, and our present investigations consider the dynamic behavior of bubble plume offset in three dimensions. The investigations are conducted with a set of closure models by the Euler–Euler approach, and subsequently, literature data for rectangular bubble columns are analyzed for comparison purposes. Moreover, the transient evolution characteristics of the bubble plume in the bubble column and the gas phase distribution in sections are introduced, and the offset characteristics and the oscillation period of the plume are analyzed. In addition, the distributions of the vector diagram of velocity and vortex intensity in the domain are given. The effects of different fluxes and column aspect ratios on bubble plumes are studied, and the offset and plume oscillation period (POP) characteristics of bubbles are examined. The investigations reveal quantitative correlations of operating conditions (gas volume flux) and aspect ratios that have not been reported so far, and the simulated and experimental POP results agree well. An interesting phenomenon is that POP does not occur under conditions of a high flux and aspect ratio, and the corresponding prediction values for the conditions with and without POP are given as well. The results reported in this paper may open up a new way for further study of the mass transfer of bubble plumes and development of chemical equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.