The information technologies have been increasing exponentially following Moore's law over the past decades. This has fundamentally changed the ways of work and life. However, further improving data process efficiency is facing great challenges because of physical and architectural limitations. More powerful computational methodologies are crucial to fulfill the technology gap in the post-Moore's law period. The memristor exhibits promising prospects in information storage, high-performance computing, and artificial intelligence. Since the memristor was theoretically predicted by L. O. Chua in 1971 and experimentally confirmed by HP Laboratories in 2008, it has attracted great attention from worldwide researchers. The intrinsic properties of memristors, such as simple structure, low power consumption, compatibility with the complementary metal oxide-semiconductor (CMOS) process, and dual functionalities of the data storage and computation, demonstrate great prospects in many applications. In this review, we cover the memristor-relevant computing technologies, from basic materials to in-memory computing and future prospects. First, the materials and mechanisms in the memristor are discussed. Then, we present the development of the memristor in the domains of the synapse simulating, in-memory logic computing, deep neural networks (DNNs) and spiking neural networks (SNNs). Finally, the existent technology challenges and outlook of the state-of-art applications are proposed.
The memristor is a promising candidate to implement high-density memory and neuromorphic computing. Based on the retention time, memristors are classified into volatile and non-volatile types. However, a single memristor...
Data-centric tactics with in-sensor computing go beyond the conventional computing-centric tactic that is suffering from processing latency and excessive energy consumption. The multifunctional intelligent matter with dynamic smart responses to...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.