In an effort to develop a more environmentally benign flame retardant for polyurethane foam (PUF), layers of halloysite clay nanotubes (HNT) stabilized by branched polyethylenimine (BPEI) or poly(acrylic acid) (PAA) are deposited from aqueous suspensions to create multilayered nanocomposite coatings. PUF is very flammable and widely used in upholstered furniture throughout the world. Foam treated with five BPEI-HNT/PAA-HNT bilayers, deposited using layer-by-layer assembly, is rendered self-extinguishing in open flame testing. Cone calorimetry reveals that this coating reduces the peak heat release rate (pkHRR) by 62%. Due to the tubular morphology of HNT, small volatile gasses given off during combustion are trapped, so total smoke release (TSR) is reduced by 60%. Infrared spectroscopy suggests this multilayer film survives during combustion, forming an HNT-rich barrier that prevents mass and energy transfer during open flame testing and calorimetry. The significant reductions in pkHRR and TSR, along with the self-extinguishing behavior, indicate that these halloysite-based multilayer films have the potential to greatly improve PUF fire safety. The low cost and natural abundance of HNT makes this technology especially amenable to widespread use.
Single-crystal SnSe 2 nanosheets with a ten atomic-layer thickness have been prepared by a facile solvothermal route reaction in benzyl alcohol in the presence of PVP. Benzyl alcohol acts as the solvent and reducing reagent to promote the formation of the hexagonal phase of SnSe 2 , and the presence of PVP provides a stable environment for the construction of the SnSe 2 nanosheets. A reasonable formation mechanism was put forward on the basis of the time-dependent experiments. The obtained SnSe 2 nanosheets displayed an enhanced photocurrent compared to the thick SnSe 2 nanoplates, which indicated potential applications in photodetectors, photovoltaic devices and so forth.
In an effort to produce effective thermoelectric nanocomposites with multiwalled carbon nanotubes (MWCNT), layer-by-layer assembly was combined with electrochemical polymerization to create synergy that would produce a high power factor. Nanolayers of MWCNT stabilized with poly(diallyldimethylammonium chloride) or sodium deoxycholate were alternately deposited from water. Poly(3,4-ethylene dioxythiophene) [PEDOT] was then synthesized electrochemically by using this MWCNT-based multilayer thin film as the working electrode. Microscopic images show a homogeneous distribution of PEDOT around the MWCNT. The electrical resistance, conductivity (σ) and Seebeck coefficient (S) were measured before and after the PEDOT polymerization. A 30 bilayer MWCNT film (<1 μm thick) infused with PEDOT is shown to achieve a power factor (PF = Sσ) of 155 μW/m K, which is the highest value ever reported for a completely organic MWCNT-based material and competitive with lead telluride at room temperature. The ability of this MWCNT-PEDOT film to generate power was demonstrated with a cylindrical thermoelectric generator that produced 5.5 μW with a 30 K temperature differential. This unique nanocomposite, prepared from water with relatively inexpensive ingredients, should open up new opportunities to recycle waste heat in portable/wearable electronics and other applications where low weight and mechanical flexibility are needed.
Hydrogen-bonded multilayer thin films are very stretchable, but their gas barrier properties are modest compared to more traditional ionically bonded assemblies. In an effort to improve the gas barrier of poly(ethylene oxide) (PEO)-poly(acrylic acid) (PAA) multilayer films without sacrificing stretchability, montmorillonite (MMT) clay platelets were combined with PAA and alternately deposited with PEO. A ten-bilayer PEO/PAA+MMT film (432 nm thick), deposited on a 1 mm PU substrate, resulted in a 54× reduction in oxygen transmission rate after exposure to a 20% strain. This system is the best combination of stretchability and gas barrier ever reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.