Micro-motors driven by light field have attracted much attentions for their potential applications. In order to drive the rotation of a micro-motor, structured optical beams with orbital angular momentum, spin angular momentum, anisotropic medium, and/or inhomogeneous intensity distribution should be used. Even though, it is still challenge to increase the optical torques (OT) in a flexible and controllable way in case of moderate incident power. In this paper, a new scheme achieving giant optical torque is proposed by increasing both the force arm and the force amplitude with the assistance of a ring resonator. In this case, the optical torque doesn’t act on the target directly by the incident beam, but is transmitted to it by rotating the ring resonator connected with it. Using the finite-difference in time-domain method, we calculate the optical torque and find that both the direction and the amplitude of the torque can be tuned flexibly by modifying the frequency, or the relative phases of the sources. More importantly, the optical torque obtained here by linearly polarized beams can be 3 orders larger than those obtained using the structured beams. This opt-mechanical-resonator based optical torque engineering system may find potential applications in optical driven micro-machines.
Confocal microscopy has the advantages of high resolution and optical sectioning ability over conventional microscopy. However, aberration induced by the optical system can compromise these advantages and considerably reduce the energy reaching the pointlike detector. We propose an accurate aberration correction method with a liquid-crystal spatial light modulator (LCSLM) in the confocal system. Each coefficient of Zernike aberration modes is calculated by directly measuring the variance of the images with different bias aberration modes. Large-coefficient (>0.7 rad) aberration is compensated first by LCSLM, following which aberrations with small coefficients are measured precisely, minimizing the cross talk between different kinds of aberrations. With this predistortion strategy, the aberration correction is much more accurate, and maximum image intensity in the normal and nonconjugated systems is improved by 2.5 times and 4 times compared to the normal correction method, respectively, demonstrating the effectiveness of our method.
In the perspective of energy sustainability, biomass is the widely used renewable domestic energy with low cost and easy availability. Increasing studies have reported the health impacts of toxic substances from biomass burning emissions. To make proper use of biomass as residential solid energy, the evaluation of its health risks and environmental impacts is of necessity. Empirical studies on the characteristics of toxic emissions from biomass burning would provide scientific data and drive the development of advanced technologies. This review focuses on the emission of four toxic substances, including heavy metals, polycyclic aromatic hydrocarbons (PAHs), elemental carbon (EC), and volatile organic compounds (VOCs) emitted from biomass burning, which have received increasing attention in recent studies worldwide. We focus on the developments in empirical studies, methods of measurements, and technical factors. The influences of key technical factors on biomass burning emissions are combustion technology and the type of biomass. The methods of sampling and testing are summarized and associated with various corresponding parameters, as there are no standard sampling methods for the biomass burning sector. Integration of the findings from previous studies indicated that modern combustion technologies result in a 2–4 times reduction, compared with traditional stoves. Types of biomass burning are dominant contributors to certain toxic substances, which may help with the invention or implementation of targeted control technologies. The implications of previous studies would provide scientific evidence to push the improvements of control technologies and establish appropriate strategies to improve the prevention of health hazards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.