Defects have been observed in graphene and are expected to play a key role in its optical, electronic, and magnetic properties. However, because most of the studies focused on the structural characterization, the implications of topological defects on the physicochemical properties of graphene remain poorly understood. Here, we demonstrate a bottom-up synthesis of three novel nanographenes (1−3) with well-defined defects in which seven-five-seven (7− 5−7)-membered rings were introduced to their sp 2 carbon frameworks. From the X-ray crystallographic analysis, compound 1 adopts a nearly planar structure. Compound 2, with an additional five-membered ring compared to 1, possesses a slightly saddle-shaped geometry. Compound 3, which can be regarded as the "head-to-head" fusion of 1 with two bonds, features two saddles connected together. The resultant defective nanographenes 1−3 were well-investigated by UV−vis absorption, cyclic voltammetry, and time-resolved absorption spectra and further corroborated by density functional theory (DFT) calculations. Detailed experimental and theoretical investigations elucidate that these three nanographenes 1−3 exhibit an anti-aromatic character in their ground states and display a high stability under ambient conditions, which contrast with the reported unstable biradicaloid nanographenes that contain heptagons. Our work reported herein offers insights into the understanding of structure-related properties and enables the control of the electronic structures of expanded nanographenes with atomically precise defects.Article pubs.acs.org/JACS
Dedicated to Professor Klaus Müllen on the occasion of his 75 birthdayDefective nanographenes containing joined pentagons and heptagons exhibit striking physicochemical properties from both experimental and theoretical perspectives compared with their pure hexagonal counterparts. Thus, the synthesis and characterization of these unique polyarenes with well-defined defective topologies have attracted increasing attention. Despite extensive research on nonalternant molecules since the last century, most studies focused on the corresponding mutagenic and carcinogenic activities. Recently, researchers have realized that the defective domain induces geometric bending and causes electronic perturbation, thus leading to significant alteration of the photophysical properties. This review discusses the synthesis and characterization of small nonalternant polycyclic hydrocarbons in the early stage and recent developments in embedding pentagon-heptagon (5-7) pairs into large carbon skeletons through in-solution chemistry.
Multicyclic polystyrene (PS) with hyperbranched structure was constructed in an efficient way. First, a seesaw-type PS was synthesized via atom transfer radical polymerization (ATRP) using a Y-shaped ATRP initiator containing one hydroxyl at center and bromine at each end. After azidation, the anthryl and hydroxyl groups were introduced to the ends of the polymer chain by click reaction with a trifunctional molecule bearing alkynyl, hydroxyl, and anthryl groups (alkynyl-OH-ant). By irradiation with 365 nm UV light in a highly dilute condition, cyclic polymer with three hydroxyl groups (c-PS-(OH)3) can be obtained; then it was converted to a cyclic polymer containing three azides (c-PS-(N3)3) by bromination of the hydroxyl groups and azidation. This “A3” cyclic macromonomer was then used to construct hyperbranched multicyclic polymers via self-accelerating click reaction with sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA). The properties of obtained polymer were characterized by NMR, FT-IR, MALDI-TOF MS, and TD-SEC. It was calculated from the MALLS results that there were about 35 “small rings” in the multicyclic polymer. Moreover, because of the photocleavage reaction of the anthracene dimer, this hyperbranched multicyclic polymer can be cleaved to long-chain hyperbranched PS by irradiation with 254 nm UV light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.