Experimental analyses of synthetic jet control (SJC) effects on aerodynamic characteristics of rotor in steady state and in hover were conducted. To ensure the structural strength of rotor and enough interior space for holding the synthetic jet actuators (SJAs), a particular blade with a frame-covering structure was designed and processed, and the experiment was conducted with low free stream velocities and rotor rotation speeds. There were three test conditions. In steady state, there were three free stream velocities (10m/s, 15m/s and 20m/s). In hover state, the rotor was worked with two rotation speeds of 180RPM and 240RPM. In forward flight, the rotor was worked with a rotation speed of 180RPM and a free stream velocity of 7.5m/s. To measure the synthetic jet control effect on rotor in stall, the range of collective pitch was set from 10° to 28° in steady state. The aerodynamic forces and sectional velocity field were measured by using the six-component balance and the Particle Image Velocimetry (PIV) system in the wind tunnel. Flow control effects on the blade based on the synthetic jets (SJ) were experimentally investigated with different jet parameters, such as jet locations, jet angles, and jet velocities. In steady state, the jet closer to the leading edge, and the jet angle of 90° had more advantages in improving the aerodynamic characteristics. Furthermore, the aerodynamic forces and sectional velocity field measurement of rotor in hover were conducted, it showed that SJAs could increase flow velocity at the upper surface, which led to lower upper surface pressure. As a result, the normal forces of rotor with two rotation speeds were increased significantly. These results indicated that the synthetic jet has a capability of increasing the normal force and delaying or preventing the stall of rotor.
In order to improve the aerodynamic characteristics of rotor, a new active flow control strategy by combining a synthetic jet actuator and a variable droop leading-edge or a trailing-edge flap has been proposed. Their control effects are numerically investigated by computational fluid dynamics (CFD) method. The validated results indicate that variable droop leading-edge and synthetic jet can suppress the formation of dynamic stall vortex and delay flow separation over rotor airfoil. Compared with the baseline state, Cdmax and Cmmax are significantly reduced. Furthermore, parametric analyses on dynamic stall control of airfoil by the combinational method are conducted, and it indicates that the aerodynamic characteristics of the oscillating rotor airfoil can be significantly improved when the non-dimensional frequency ( k*) of variable droop leading-edge is about 1.0. At last, simulations are conducted for the flow control of rotor by the combinational method. The numerical results indicate that large droop angle of variable droop leading-edge can better reduce the torque coefficient of rotor and the trailing-edge flap has the capability of increasing the thrust of rotor. Also, the synthetic jet could further improve the aerodynamic characteristics of rotor.
Principle experiment for the synthetic jet control effects on the aerodynamic characteristics of the rotor in forward flight were conducted with low rotor rotation speeds and free stream velocities. To ensure the structural strength of the rotor and the enough interior room for installing the actuators, a particular blade with a frame-covering structure was designed and processed. To measure the synthetic jet control effect on the rotor in dynamic stall, the aerodynamic forces and sectional velocity field were measured by using the six-component balance and the Particle Image Velocimetry (PIV) system in the wind tunnel respectively. The experimental results indicated that the synthetic jet has the capability to delay flow separation over the blade and to improve aerodynamic characteristics of the rotor. Furthermore, flow control effects of synthetic jets on rotor's aerodynamic characteristics were experimentally investigated with different jet parameters, such as jet locations, jet angles and excitation voltages, and some meaningful conclusions were obtained. In forward flight, the jet closer to the leading-edge of the blade is more effective in improving aerodynamic characteristics of the rotor. The jet with 90° inclined angle could bring out the most increment of the rotor normal force, while the jet with 30° inclined angle has the best control effects on preventing flow separation in the retreating side. In general, the synthetic jet with 30° inclined angle is more appropriate for preventing dynamic stall of the helicopter rotor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.