Simulating urban morphology with location attributes is a challenging task in urban science. Recent studies have shown that Generative Adversarial Networks (GANs) have the potential to shed light on this task. However, existing GAN-based models are limited by the sparsity of urban data and instability in model training, hampering their applications. Here, we propose a GAN framework with geographical knowledge, namely Metropolitan GAN (MetroGAN), for urban morphology simulation. We incorporate a progressive growing structure to learn hierarchical features and design a geographical loss to impose the constraints of water areas. Besides, we propose a comprehensive evaluation framework for the complex structure of urban systems. Results show that MetroGAN outperforms the state-of-the-art urban simulation methods by over 20% in all metrics. Inspiringly, using physical geography features singly, MetroGAN can still generate shapes of the cities. These results demonstrate that MetroGAN solves the instability problem of previous urban simulation GANs and is generalizable to deal with various urban attributes.
CCS CONCEPTS• Applied computing → Sociology; Arts and humanities; • Computing methodologies → Computer vision.
AI illustrator aims to automatically design visually appealing images for books to provoke rich thoughts and emotions. To achieve this goal, we propose a framework for translating raw descriptions with complex semantics into semantically corresponding images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.