A novel multi-classification method, which integrates the elastic net and probabilistic support vector machine, was proposed to solve this problem in cancer detection with gene expression profile data of platelets, whose problems mainly are a kind of multi-class classification problem with high dimension, small samples, and collinear data. The strategy of one-against-all (OVA) was employed to decompose the multi-classification problem into a series of binary classification problems. The elastic net was used to select class-specific features for the binary classification problems, and the probabilistic support vector machine was used to make the outputs of the binary classifiers with class-specific features comparable. Simulation data and gene expression profile data were intended to verify the effectiveness of the proposed method. Results indicate that the proposed method can automatically select class-specific features and obtain better performance of classification than that of the conventional multi-class classification methods, which are mainly based on global feature selection methods. This study indicates the proposed method is suitable for general multi-classification problems featured with high-dimension, small samples, and collinear data.
In order to reduce the uncertainty of the genetic algorithm (GA) in optimizing the near-infrared spectral calibration model and avoid the loss of spectral information of the unselected variables, a strategy of fusing consensus models is proposed to measure the soluble solids content (SSC) in peaches. A total of 266 peach samples were collected at four arrivals, and their interactance spectra were scanned by an integrated analyzer prototype, and then an internal index of SSC was destructively measured by the standard refractometry method. The near-infrared spectra were pre-processed with mean centering and were selected successively with a genetic algorithm (GA) to construct the consensus model, which was integrated with two member models with optimized weightings. One was the conventional partial least square (PLS) optimized with GA selected variables (PLSGA), and the other one was the derived PLS developed with residual variables after GA selections (PLSRV). The performance of PLSRV models showed some useful spectral information related to peaches’ SSC and someone performed close to the full-spectral-based PLS model. Among these 10 runs, consensus models obtained a lower root mean squared errors of prediction (RMSEP), with an average of 1.106% and standard deviation (SD) of 0.0068, and performed better than that of the optimized PLSGA models, which achieved a RMSEP of average 1.116% with SD of 0.0097. It can be concluded that the application of fusion strategy can reduce the fluctuation uncertainty of a model optimized by genetic algorithm, fulfill the utilization of the spectral information amount, and realize the rapid detection of the internal quality of the peach.
Athletes usually take nutritional supplements and perform the specialized training to improve the performance of sport. A quick assessment of their athletic status will help to understand the current physical function of athletes’ status and the effect of nutritional supplementation. Human urine, as one of the most important body indicators, is composed of many metabolites, which can provide effective monitoring information for physical conditions. In this study, temperature-dependent near-infrared spectroscopy (NIRS) technology was used to collect the spectra of athlete’s urine for evaluating the feasibility of rapidly detecting the exercise state of the basketball player. To obtain the detection results accurately, several chemometrics methods including principal component analysis (PCA), variables selection method of variable importance in projection (VIP), continuous 1D wavelet transform (CWT), and partial least square-discriminant analysis (PLS-DA) were employed to develop a classifier to distinguish the physical status of athletes. The optimal classifying results were obtained by wavelet-PLS-DA classifier, whose average precision, sensitivity, and specificity are all above 0.95, and the overall accuracy of all samples is 0.97. These results demonstrate that temperature-dependent NIRS can be used to rapidly assess the physical function of athlete’s status and the effect of nutritional supplementation is feasible. It can be believed that temperature-dependent NIR spectroscopy will obtain applications more widely in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.