Potent immunosuppressive mechanisms within the tumor microenvironment contribute to the resistance of aggressive human cancers to immune checkpoint blockade (ICB) therapy. One of the main mechanisms for myeloid-derived suppressor cells (MDSCs) to induce T cell tolerance is through secretion of reactive nitrogen species (RNS), which nitrates tyrosine residues in proteins involved in T cell function. However, so far very few nitrated proteins have been identified. Here, using a transgenic mouse model of prostate cancer and a syngeneic cell line model of lung cancer, we applied a nitroproteomic approach based on chemical derivation of 3-nitrotyrosine and identified that lymphocyte-specific protein tyrosine kinase (LCK), an initiating tyrosine kinase in the T cell receptor signaling cascade, is nitrated at Tyr394 by MDSCs. LCK nitration inhibits T cell activation, leading to reduced interleukin 2 (IL2) production and proliferation. In human T cells with defective endogenous LCK, wild type, but not nitrated LCK, rescues IL2 production. In the mouse model of castration-resistant prostate cancer (CRPC) by prostate-specific deletion of ,, and , CRPC is resistant to an ICB therapy composed of antiprogrammed cell death 1 (PD1) and anticytotoxic-T lymphocyte-associated protein 4 (CTLA4) antibodies. However, we showed that ICB elicits strong anti-CRPC efficacy when combined with an RNS neutralizing agent. Together, these data identify a previously unknown mechanism of T cell inactivation by MDSC-induced protein nitration and illuminate a clinical path hypothesis for combining ICB with RNS-reducing agents in the treatment of CRPC.
Development of a peptide-based affinity matrix and detection reagent is important for biomedical research and the biopharmaceutical industry. In the present work, we designed and synthesized an immunoglobin G (IgG)-binding peptide ligand, Fc-III-4C. Fc-III-4C is composed of 15 residues, and the 4 cysteine residues form 2 disulfide bonds to generate a double cyclic structure. The binding affinity of the Fc-III-4C peptide toward human IgG was determined to be 2.45 nM (Kd), which is higher than that of IgG with Protein A/G (Pro-A/G). Importantly, the Fc-III-4C peptide displayed high affinity to various IgGs from different species. Fc-III-4C immobilized agarose beads exhibited high stability and reusability when compared with that of the Pro-A/G-immobilized beads. The conjugate of Fc-III-4C with FITC was demonstrated to be suitable for immunofluorescence detection of proteins expressed in cells. These results demonstrate that the Fc-III-4C peptide is a useful affinity ligand for antibody purification and as a protein detection reagent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.