Streptococcus suis serotype 2 (SS2) is an important swine and human pathogen responsible for septicemia and meningitis. The bacterial homologues of eukaryotic-type serine/threonine kinases (ESTKs) have been reported to play critical roles in various cellular processes. To investigate the role of STK in SS2, an isogenic stk mutant strain (Δstk) and a complemented strain (CΔstk) were constructed. The Δstk showed a significant decrease in adherence to HEp-2 cells, compared with the wild-type strain, and a reduced survival ratio in whole blood. In addition, the Δstk exhibited a notable reduced tolerance of environmental stresses including high temperature, acidic pH, oxidative stress, and high osmolarity. More importantly, the Δstk was attenuated in both the CD1 mouse and piglet models of infection. The results of quantitative reverse transcription-PCR (qRT-PCR) analysis indicated that the expressions of a few genes involving in adherence, stress response and virulence were clearly decreased in the Δstk mutant strain. Our data suggest that SsSTK is required for virulence and stress response in SS2.
Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%.The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon.
The aim of the research was to investigate the anti-inflammatory mechanism of Pulsatillae Decoction (PD), the levels of interleukin (IL)-6, IL-8, E-selectin, and thromboxane B(2) (TXB(2)) secreted by cultured rat intestinal microvascular endothelial cells (RIMECs) were determined after treatment with its active ingredients, namely anemoside B4, anemonin, berberine, jatrorrhizine, palmatine, aesculin, and esculetin. RIMECs were challenged with 1 microg/mL lipopolysaccharide (LPS) for 3 h, and then treated with each of the seven ingredients at three concentrations (1, 5 and 10 microg/mL) for 24 h. The results revealed that anemonin, aesculin and esculetin inhibited the production of IL-6, aesculin and esculetin inhibited the secretion of IL-8, anemoside B4, berberine and jatrorrhizine downregulated E-selectin expression, anemonin, berberine, jatrorrhizine and palmatine decreased the content of TXB(2). All these changes were significant. Taken together, the data suggest that all seven active ingredients of PD can effectively reduce inflammatory response, thus relieving intestinal dysfunction via multiple pathways.
There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L(-1)) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P < 0.05) and followed the same pattern in the three species. The parameter values were promoted in lower NaHCO3 concentrations (up to 252 or 336 mg L(-1)) and inhibited in higher NaHCO3 concentrations (>336 mg L(-1) for Gp. lemaneiformis and >420 mg L(-1) for the other two species). Moreover, species-specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L(-1) for Gp. lemaneiformis and 336 mg L(-1) for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.