Common root rot (CRR) caused by the soilborne pathogen Bipolaris sorokiniana (teleomorph Cochliobolus sativus) is becoming increasingly prevalent worldwide. Identification of CRR is difficult and time‐consuming for human assessors due to the non‐distinctive above‐ground symptoms, with browning of subcrown internodes and roots the most distinguishing symptom of infection. CRR disease has been recognized as a significant disease for cereal crops in many countries. In 2009, CRR in Australia was estimated to cause $30 million average annual yield loss for wheat and $13 million for barley. Recent evidence indicates CRR may be more prevalent than expected in Australian wheat cropping areas due to lack of research on this disease. Low levels of B. sorokiniana survive in the soil for up to 10 years and attack plants at early stages of growth. Therefore, mitigating CRR in wheat and barley may not be practical at the late stages of infection due to lack of effective methods; however, early detection might be viable to alleviate the impact of this disease. A comprehensive overview of CRR caused by B. sorokiniana, including disease background, worldwide economic losses, management methods, potential CRR detection using multispectral and hyperspectral sensors and the research focus over the past 50 years is provided in this article. This review paper is expected to provide thorough supplemental information for current studies about CRR and proposes recommendations for whole‐of‐field disease scouting methods to farmers, enabling reduced time and cost for CRR management and increasing wheat and barley production worldwide.
The macrozoobenthos is an important link of the food web in coastal wetlands. Diet-habitat relationships may significantly depend on qualitative differences and seasonal availability of food sources. Increasing interest has been shown in food web structure altered by non-native plants. In particular, however, a non-native mangrove species from Bangladesh, Sonneratia apetala, has been widely planted in China, but little is known about its possible impact on food sources of macrozoobenthos living in these non-native mangrove forests. Therefore, in this study, we used fatty acid analysis to compare the food sources of one littorinid snail and two grapsid crab species between two native mangrove forests and one non-native S. apetala plantation in the Zhanjiang Mangrove National Nature Reserve of China. We found that the sediment of all three forests had high diatom and bacteria signals, but low mangrove leaf signals, while the opposite patterns were detected in the three macrozoobenthos. Specifically, the gastropod Littoraria melanostoma relied mainly on mangrove leaves and brown algae as food sources, with significant differences among the three mangrove forests, and showed significant seasonal variation in its diet. The grapsidae species (Perisesarma bidens and Parasesarma plicatum) mainly grazed on mangrove litter, brown and green algae, and occasionally consumed diatoms and bacteria, also showing significant seasonal variation in their diet. Overall, Principle Components Analysis (PCA) of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.