Several influential reports have suggested that one of the most appropriate responses to expected food shortages and ongoing environmental degradation is sustainable intensification, i.e. the increase of food production with at worst no increase in environmental harm, and ideally environmental benefit. Here we sought evidence of sustainable intensification among British farmers by selecting innovative arable, dairy, mixed and upland farms and analysing their own data on yields, inputs and land use and , where area took into account estimated area to grow any imported animal feeds), regulation of climate, air and water quality (modelled -1-1-1 emissions of GHGs (CO2e ha), ammonia (kg ha) and nitrate loss (kg ha)) and biodiversity (using an index based on the presence of habitats and management).Several farms have increased both food production and other ecosystem services over this time by increasing yields, using resources more efficiently and /or enhancing biodiversity, and sometimes by reducing livestock numbers and increasing cropping. The motivation has been to improve farm profitability through increasing food production, reducing input costs and accessing public payments through agri-environment schemes and generating renewable energy. Such sustainable intensification was not achieved by farmers who increased meat or milk yields. Sustainable intensification can be achieved when the correct drivers are in place to influence the actions of individual farmers. Also, it is possible to indicate sustainable intensification by using a small number of high-level indicators derived from data that farmers already hold, though such an approach may not capture the impacts of farmer innovative practices. HIGHLIGHTSSustainable intensification is being achieved by innovative farmers in Britain Sustainable intensification is driven by the desire to raise income and cut costs Biodiversity enhancement is seen by farmers as a cost, to be borne by public payments Sustainable intensification can be indicated using farmers" own data but the metrics need to be refined Research is needed to capture the impacts of innovations such as zero tillage
Abscisic acid (ABA) plays an important role in plant adaptation to water deficits, but its role in regulating root growth (primary root elongation and lateral root number) during different drought-phases remains unclear. Here, we exposed wild-type (WT) and ABA-deficient (not) tomato plants to three continuous drought-phases
Precision agriculture (PA) technologies have great potential for promoting sustainable intensification of food production, ensuring targeted delivery of agricultural inputs, and hence food security and environmental protection. The benefits of PA technologies are applicable across a broad range of agronomic, environmental and rural socioeconomic contexts globally. However, farmer and land-manager adoption in low to middle income countries has typically been slower than that observed in more affluent countries. China is currently engaged in the process of agricultural modernisation to ensure food security for its 1.4 billion population and has developed a portfolio of policies designed to improve food security, while simultaneously promoting environmental protection. Particular attention has been paid to the reduction of agricultural inputs such as fertilisers and pesticides. The widespread adoption of PA technologies across the Chinese agricultural landscape is central to the success of these policies. However, socioeconomic and cultural barriers, farm scale, (in particular the prevalence of smaller family farms) and demographic changes in the rural population, (for example, the movement of younger people to the cities) represent barriers to PA adoption across China. A framework for ensuring an acceptable and accelerated PA technology trajectory is proposed which combines systematic understanding of farmer and end-user priorities and preferences for technology design throughout the technology development process, and subsequent end-user requirements for implementation (including demonstration of economic and agronomic benefits, and knowledge transfer). Future research will validate the framework against qualitative and quantitative socioeconomic, cultural and agronomic indicators of successful, or otherwise, PA implementation. The results will provide the evidence upon which to develop further policies regarding how to secure sustainable food production and how best to implement PA in China, as well as practical recommendations for optimising end-user uptake.
Soil drying enhances root ABA accumulation and rhizosheath formation, but whether ABA mediates rhizosheath formation is unclear. Here, we used the ABA-deficient mutant Az34 to investigate molecular and morphological changes by which ABA could affect rhizosheath formation. Mild soil drying with intermittent watering
The impact of agricultural cooperatives on apple farmers’ technical efficiency (TE) in China was examined. The cooperatives were divided into two groups: a collective marketing group for farmers and an equivalent non-marketing group that did not provide a marketing service, although other functions remained the same. Using the propensity score matching (PSM) procedure and stochastic production frontier (SPF) modelling, cooperatives’ key functions that potentially increase farmers’ TE can be identified. The results indicate that membership of either group is positively related to yield. However, cooperatives that were not engaged in marketing achieved higher TE than non-members. This suggests that policy makers should encourage cooperatives to focus on activities that do not include direct marketing to increase TE in apple production in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.