N,O-aminals, molecules bearing a geminally N,O-substituted (stereogenic) carbon center, have been recently recognized as an important class of building blocks in organic synthesis. As direct precursors of imines and iminium ions, N,O-aminals were converted through asymmetric organocatalysis or metal catalysis to diverse enantiomerically enriched compounds including N-heterocycles. Furthermore, cyclic N,O-hemiaminals acted as acyclic amino aldehyde surrogates, which were transformed to enantioenriched products otherwise challenging to access. Finally, cyclic N,O-aminals were formed in situ as key intermediates in asymmetric catalysis. In this review, we introduce a wide array of catalytic asymmetric protocols involving the use of four distinct types of N,O-aminals as starting materials or key intermediates.
[reaction: see text] Phosphine dendrimer-stabilized palladium nanoparticles were synthesized and found to be highly effective for Suzuki coupling reactions, affording good to excellent product yields, high turnover number (up to 65,000), and excellent reusability (up to 9 catalytic runs). Furthermore, these Pd nanoparticles are efficient and selective catalysts for hydrogenations.
Given the important agricultural and medicinal application of optically pure heterocycles bearing a trifluoromethyl group at the stereogenic carbon center in the heterocyclic framework, the exploration of efficient and practical synthetic strategies to such types of molecules remains highly desirable. Catalytic enantioselective synthesis has one clear advantage that it is more cost-effective than other synthetic methods, but remains limited by challenges in achieving excellent yield and stereoselectivities with a low catalyst loading. Thus far, numerous models of organo- and organometal-catalyzed asymmetric reactions have been exploited to achieve this elusive goal over the past decade. This review article describes recent progress on this research topic, and focuses on an understanding of the catalytic asymmetric protocols exemplified in the catalytic enantioselective synthesis of a wide range of complex enantioenriched trifluoromethylated heterocycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.