Based on the winding function considering the slot width and the air-gap permeability considering the slot opening width, the main radial electromagnetic force wave expressions of the induction motor are determined. The electromagnetic force-vibration prediction model of the induction motor is established. The natural frequency and acoustic radiation model of a finite-length cylindrical shell with two ends clamped is deduced. On this basis, an improved magnetic noise prediction model of cage induction motor is improved, which can calculate the combined effects of electromagnetic force on the axis and circumferential modes of the stator system. Aiming at two different noise reduction targets, an optimization method is proposed to reduce the overall electromagnetic noise of the motor without sacrificing efficiency and output torque. The feasibility of the model for electromagnetic noise prediction is verified by finite element simulation and experiments. For a 30/26 slots five-phase induction motor, low-noise analysis and optimization schemes of the opening width for two different targets are given. The results show that the larger slot opening scheme can also result in less magnetic noise for the right selection, which is contrary to the common design rule that recommends minimizing slot opening to reduce magnetic noise.
Five-phase induction motors have the characteristics of high torque density, low torque ripple, and flexible control, making them suitable for medium- and low-voltage power supply situations. However, with the expansion of application scenarios, five-phase motors need to cope with increasingly complex operating conditions. Five-phase motors for propeller propulsion will face various complex sea conditions during actual use, and five-phase motors for electric vehicles will also face various complex road conditions and operating requirements during use. Therefore, as a propulsion motor, its speed control system must have strong robustness and anti-disturbance performance. The use of traditional PI algorithms has problems, such as poor adaptability and inability to adapt to various complex working conditions, but the use of an active disturbance rejection controller (ADRC) can effectively solve these problems. However, due to the significant coupling between the variables of induction motors and the large number of parameters in the ADRC, tuning the parameters of the ADRC is complex. Traditional empirical tuning methods can only obtain a rough range of parameter values and may have significant errors. Therefore, this paper uses ADRC based on genetic algorithm(GAADRC) to tune the parameters of the control and design an objective function based on multi-objective optimization. The parameters to be adjusted were obtained through multiple iterations. The simulation and experimental results indicate that GAADRC has lower startup overshoot, faster adjustment time, and lower load/unload speed changes compared to the empirically tuned PI controller and ADRC. Meanwhile, using a genetic algorithm for motor ADRC parameter tuning can obtain optimal control parameters while the control parameter range is completely uncertain; therefore, the method proposed in this paper has strong practical value.
For the reduction in the electromagnetic noise level of three-phase induction motors, many empirical rules and analytical models have been established to select the matching scheme of pole and slot, but they are not fully applicable to five-phase squirrel cage induction motors (FSCIM). In this paper, combined with the slot-number phase diagram (SNPD), and the electromagnetic force-vibration-acoustic analytical model deduced in Part I, the influence of pole-slot schemes, including five-phase regular-size phase-belt and fractional-slot winding, on magnetic noise is analyzed. The feasibility of electromagnetic noise prediction is verified by finite element simulation and experiments. Taking a 4 kW FSCIM as a prototype, noise prediction is carried out for all the slot-number matching schemes with pole pairs not exceeding three. For two noise reduction targets, which reduce the maximum single-frequency noise in the steady-state operation and the average noise during startup, the pole-slot numbers matching rule of FSCIM is given. This improved model is also applicable in different power ranges for the noise reduction design of five-phase motors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.