Endometrial cancer (EC) is one of the most common gynaecological malignant tumours with a high incidence, leading to urgent demands for exploring novel carcinogenic mechanisms and developing rational therapeutic strategies. The rac family of small GTPase 3 (RAC3) functions as an oncogene in various human malignant tumours and plays an important role in tumour development. However, the critical roles of RAC3 in the progression of EC need further investigation. Based on TCGA, single‐cell RNA‐Seq, CCLE and clinical specimens, we revealed that the RAC3 was specifically distributed in EC tumour cells compared to normal tissues and functioned as an independent diagnostic marker with a high area under curve (AUC) score. Meanwhile, the RAC3 expression in EC tissues was also correlated with a poor prognosis. In detail, the high levels of RAC3 in EC tissues were reversely associated with CD8+T cell infiltration and orchestrated an immunosuppressive microenvironment. Furthermore, RAC3 accelerated tumour cell proliferation and inhibited its apoptosis, without impacting cell cycle stages. Importantly, silencing RAC3 improved the sensitivity of EC cells to chemotherapeutic drugs. In this paper, we revealed that RAC3 was predominantly expressed in EC and significantly correlated with the progression of EC via inducing immunosuppression and regulating tumour cell viability, providing a novel diagnostic biomarker and a promising strategy for sensitizing chemotherapy to EC.
Background. Breast and ovarian cancers are common malignancies among women, contributing to a significant disease burden, and are characterized by a high level of genomic instability, owing to the failure of homologous recombination repair (HRR). Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP) could elicit the synthetic lethal effect of tumor cells in patients with homologous recombination deficiency, ultimately achieving a favorable clinical benefit. However, primary and acquired resistance remain the greatest hurdle, limiting the efficacy of PARP inhibitors; thus, strategies conferring or augmenting tumor cell sensitivity to PARP inhibitors are urgently required. Methods. Our RNA-seq data of niraparib-treated and -untreated tumor cells were analyzed by R language. Gene Set Enrichment Analysis (GSEA) was applied to assess the biological functions of GTP cyclohydrolase 1 (GCH1). Quantitative real-time PCR, Western blotting, and immunofluorescence were applied to confirm the upregulation of GCH1 upon niraparib treatment at transcriptional and translational levels. Immunohistochemistry of patient-derived xenograft (PDX)-derived tissue sections further validated that niraparib increased GCH1 expression. Tumor cell apoptosis was detected by flow cytometry, while the superiority of the combination strategy was confirmed in the PDX model. Results. The expression of GCH1 was aberrantly enriched in breast and ovarian cancers and increased after niraparib treatment via JAK-STAT signaling. GCH1 was also demonstrated to be associated with the HRR pathway. Subsequently, the enhancement of the tumor-killing effect of PARP inhibitors induced by GCH1 suppression using siRNA and GCH1 inhibitor was validated by flow cytometry in vitro. Finally, using the PDX model, we further demonstrated that GCH1 inhibitors markedly potentiated PARP inhibitors’ antitumor efficacy in vivo. Conclusion. Our results illustrated that PARP inhibitors promote GCH1 expression via the JAK-STAT pathway. We also elucidated the potential relationship between GCH1 and the homologous recombination repair pathway and proposed a combination regimen of GCH1 suppression with PARP inhibitors in breast and ovarian cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.