Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been emerging and circulating globally since the start of the COVID-19 pandemic, of which B.1.617 lineage that was first reported in India at the end of 2020, soon became predominant. Tracing genomic variations and understanding their impact on the viral properties are the foundations for the vaccine and drug development and for the mitigation measures to be taken or lifted. In this study, 1,051 near-complete genomes and 1,559 spike (S) sequences belonging to the B.1.617 were analyzed. A genome-wide spread of single nucleotide polymorphisms (SNPs) was identified. Of the high frequency mutations identified, 61% (11/18) involved structural proteins, despite two third of the viral genome encoding nonstructural proteins. There were 22 positive selection sites, mostly distributed across the S protein, of which 16 were led by non-C to U transition and should be of a special attention. Haplotype network revealed that a large number of daughter haplotypes were continually derived throughout the pandemic, of which H177, H181 H219 and H286 from the ancestor haplotype H176 of B.1.617.2 were widely prevalent. Besides the well known substitutions of L452R, P681R and deletions of E156 and F157, as well as the potential biological significance, structural analysis in this study still indicated that new amino acid changes in B.1.617, such as E484Q and N501Y, had reshaped the viral bonding network, and increasingly sequenced N501Y mutant with a potential enhanced binding ability was detected in many other countries in the follow-up monitoring. Although we can’t conclude the properties of all the mutants including N501Y thoroughly, it merits focusing on their spread epidemically and biologically.
Osteoarthritis, (OA), also known as degenerative arthritis or degenerative joint disease, is the most common form of arthritis, affecting millions of people worldwide. It is a group of mechanical abnormalities involving degradation of the joints and occurs when the protective cartilage (articular cartilage) on the ends of bones such as the knees, hips and fingers abrades over time. It mainly affects the whole joint structure, including the articular cartilage, subchondral bone and synovial tissue. Extensive work has been done in the past decades to investigate the cellular mechanism of this disease. However, to date, it is still poorly understood, and there is no effective treatment. Recently, both in vitro and in vivo studies have confirmed adipokines play critical roles during OA development. Among these, leptin and adiponectin have been well investigated, whereas the effect of the novel adipokine, visfatin, on OA still needs to be revealed. Therefore, in this short review, we will focus on visfatin and summarize the current progress in the research on its role in OA development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.