Phase synchronization has been an effective measurement of functional connectivity, detecting similar dynamics over time among distinct brain regions. However, traditional phase synchronization-based functional connectivity indices have been proved to have some drawbacks. For example, the phase locking value (PLV) index is sensitive to volume conduction, while the phase lag index (PLI) and the weighted phase lag index (wPLI) are easily affected by noise perturbations. In addition, thresholds need to be applied to these indices to obtain the binary adjacency matrix that determines the connections. However, the selection of the thresholds is generally arbitrary. To address these issues, in this paper we propose a novel index of functional connectivity, named the phase lag based on the Wilcoxon signed-rank test (PLWT). Specifically, it characterizes the functional connectivity based on the phase lag with a weighting procedure to reduce the influence of volume conduction and noise. Besides, it automatically identifies the important connections without relying on thresholds, by taking advantage of the framework of the Wilcoxon signed-rank test. The performance of the proposed PLWT index is evaluated on simulated electroencephalograph (EEG) datasets, as well as on two resting-state EEG datasets. The experimental results on the simulated EEG data show that the PLWT index is robust to volume conduction and noise. Furthermore, the brain functional networks derived by PLWT on the real EEG data exhibit a reasonable scale-free characteristic and high test-retest (TRT) reliability of graph measures. We believe that the proposed PLWT index provides a useful and reliable tool to identify the underlying neural interactions, while effectively diminishing the influence of volume conduction and noise.
The neurocognitive characteristics of mathematically gifted adolescents are characterized by highly developed functional interactions between the right hemisphere and excellent cognitive control of the prefrontal cortex, enhanced frontoparietal cortex, and posterior parietal cortex. However, it is still unclear when and how these cortical interactions occur. In this paper, we used directional coherence analysis based on Granger causality to study the interactions between the frontal brain area and the posterior brain area in the mathematical frontoparietal network system during deductive reasoning tasks. Specifically, the scalp electroencephalography (EEG) signal was first converted into a cortical dipole source signal to construct a Granger causality network over the θ-band and γ-band ranges. We constructed the binary Granger causality network at the 40 pairs of cortical nodes in the frontal lobe and parietal lobe across the θ-band and the γ-band, which were selected as regions of interest (ROI). We then used graph theory to analyze the network differences. It was found that, in the process of reasoning tasks, the frontoparietal regions of the mathematically gifted show stronger working memory information processing at the θ-band. Additionally, in the middle and late stages of the conclusion period, the mathematically talented individuals have less information flow in the anterior and posterior parietal regions of the brain than the normal subjects. We draw the conclusion that the mathematically gifted brain frontoparietal network appears to have more “automated” information processing during reasoning tasks.
The smart distribution system is an important aspects of the smart grid framework. There will be systematic update on the infrastructure of distribution side. In smart distribution grid pilot cities of China, a large number of ring main units are installed to improve the system reliability and there will be higher DG penetration rate to realize emission control. Therefore, the short circuit currents on the distribution side in the smart grid framework will be higher than that in the conventional distribution system. To meet this challenge, the fast short circuit current limiter (Is-limiter) is proposed to reduce the short circuit current level. The first 10kV Is-limiter has been installed in Xiamen. The aim of this paper is to study the impact of the Is-limiter on the distribution system in terms of short circuit current level, voltage quality and DG dynamic performances. In this paper, formula to describe the short circuit current level and the voltage sag level in the Is-limiter embedded network are deduced and the DG dynamic performances during fault are studied by time domain simulation. It is expected that the research in this paper can provide references for employing Is-limiter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.