Clusterin (CLU) is a chaperone-like protein that has been demonstrated to have a direct relationship with cancer occurrence, progression, or metastasis. Clusterin was downregulated in tumor tissues using three datasets of tongue squamous carcinoma from the Gene Expression Omnibus. We further retrieved datasets from The Cancer Genome Atlas and Gene Expression Omnibus to thoroughly investigate the carcinogenic consequences of Clusterin. Our findings revealed that decreased Clusterin expression in malignancies was associated with a worse overall survival prognosis in individuals with multiple tumors; Clusterin gene deep deletions were found in almost all malignancies and were connected to most cancer patient’s prognosis, Clusterin DNA methylation level was dependent on tumor type, Clusterin expression was also linked to the invasion of cancer-associated CD8+ T-cells and fibroblasts in numerous cancer forms. Moreover, pathway enrichment analysis revealed that Clusterin primarily regulates biological processes such as cholesterol metabolism, phospholipid binding, and protein-lipid complex formation. Overall, our pan-cancer research suggests that Clusterin expression levels are linked to tumor carcinogenesis and prognosis, which contributes to understanding the probable mechanism of Clusterin in tumorigenesis as well as its clinical prognostic significance.
Osteoarthritis (OA) is a chronic and complicated degenerative disease for which there is currently no effective treatment. Isoorientin (ISO) is a natural plant extract that has antioxidant activity and could be used to treat OA. However, due to a lack of research, it has not been widely used. In this study, we investigated the protective effects and molecular mechanisms of ISO on H 2 O 2 -induced chondrocytes, a widely used cell model for OA. Based on RNA-seq and bioinformatics, we discovered that ISO significantly increased the activity of chondrocytes induced by H 2 O 2 , which was associated with apoptosis and oxidative stress. Furthermore, the combination of ISO and H 2 O 2 significantly reduced apoptosis and restored mitochondrial membrane potential (MMP), which may be achieved by inhibiting apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, ISO increased superoxide dismutase (SOD), heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO-1) and reduced malondialdehyde (MDA) levels. Finally, ISO inhibited H 2 O 2 -induced intracellular reactive oxygen species (ROS) in chondrocytes by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) and phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathways. This study establishes a theoretical framework for ISO’s ability to inhibit OA in vitro models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.