The study objective was to clarify how the growth stages of the Pacific oyster Crassostrea gigas affect selective suspension-feeding of particulate organic matter (POM) and the composition of biodeposits. A day-long (22 h), continuous-flow mesocosm experiment was conducted with 3, 15, and 27 mo old oysters. The suspended particulate matter (PM), settled PM (mostly biodeposits in the oyster mesocosms), and oyster soft tissues were analysed to determine the content of fatty acids, organic carbon, and nitrogen, as well as the carbon and nitrogen stable isotope ratios to trace compositional changes in POM through oyster biodeposition. Regardless of oyster age, the stable isotope ratios of biodeposits were similar to those of the body tissues but not to those of the suspended PM, indicating that oysters selectively fed on assimilable fractions of POM. Compared with the suspended PM, a higher concentration of long-chain polyunsaturated fatty acids was found in the body tissues and, consequently, in the biodeposits; in contrast, the concentrations of shorter-chain fatty acids were generally lower in the biodeposits. Furthermore, the biodeposits produced by the older oysters had higher carbon, nitrogen, and fatty acid contents compared with the biodeposits produced by the 3 mo old oysters. The oxygen consumption rate of biodeposits was positively related to organic carbon content, but less so to fatty acid composition. Our findings demonstrate that older oysters not only produce larger amounts of biodeposits, but that these biodeposits have higher organic and fatty acid contents, potentially exhibiting greater effects on biogeochemical and ecological processes in nearby benthic habitats.
The impacts of human-induced changes in coastal environments on shellfish farming need to be mitigated. Suspended farming species, such as oysters, greatly impact planktonic communities and benthic environments via filter feeding and bio-deposition. To more effec-tively manage coastal environments and achieve ecologically sustainable shellfish farming, interactions between coastal marine environments and aquaculture activities need to be properly assessed. We examined interactions between coastal biogeochemical environments and suspended oyster farming in Shizugawa Bay of northeastern Japan. We found that particulate organic matter (POM) produced at the oyster farm (e.g., exfoliated periphyton and/or oyster feces) locally increased the concentrations of chlorophyll a and daytime dis-solved oxygen in the bottom layer. Based on the estimated budget of POM at the bay scale, the oyster feeding rate was a couple of orders of magnitude lower than the net primary production and POM inputs at the bay boundaries (e.g., offshore and in rivers). The rela-tively high exposure of the bay and high seawater mixing rate may explain the lack of mac-roscale environmental impacts of oyster cultures at the bay scale. We also found that despite the oligotrophic environment, the oyster growth rate was higher in the bay, compared with previous estimates in other coastal areas. To understand the mechanisms sustaining the production of phytoplankton and oysters, further examinations from the perspective of nu-trient cycling in the bay are required.
The impacts of human-induced changes in coastal environments on shellfish farming need to be mitigated. Suspended farming species, such as oysters, greatly impact planktonic communities and benthic environments via filter feeding and bio-deposition. To more effec-tively manage coastal environments and achieve ecologically sustainable shellfish farming, interactions between coastal marine environments and aquaculture activities need to be properly assessed. We examined interactions between coastal biogeochemical environments and suspended oyster farming in Shizugawa Bay of northeastern Japan. We found that particulate organic matter (POM) produced at the oyster farm (e.g., exfoliated periphyton and/or oyster feces) locally increased the concentrations of chlorophyll a and daytime dis-solved oxygen in the bottom layer. Based on the estimated budget of POM at the bay scale, the oyster feeding rate was a couple of orders of magnitude lower than the net primary production and POM inputs at the bay boundaries (e.g., offshore and in rivers). The rela-tively high exposure of the bay and high seawater mixing rate may explain the lack of mac-roscale environmental impacts of oyster cultures at the bay scale. We also found that despite the oligotrophic environment, the oyster growth rate was higher in the bay, compared with previous estimates in other coastal areas. To understand the mechanisms sustaining the production of phytoplankton and oysters, further examinations from the perspective of nu-trient cycling in the bay are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.