Inspired by Fechner's law, we propose a Fechner multiscale local descriptor (FMLD) for feature extraction and face recognition. Fechner's law is a well-known law in psychology, which states that a human perception is proportional to the logarithm of the intensity of the corresponding significant differences physical quantity. FMLD uses the significant difference between pixels to simulate the pattern perception of human beings to the changes of surroundings. The first round of feature extraction is performed in two local domains of different sizes to capture the structural features of the facial images, resulting in four facial feature images. In the second round of feature extraction, two binary patterns are used to extract local features on the obtained magnitude and direction feature images, and four corresponding feature maps are output. Finally, all feature maps are fused to form an overall histogram feature. Different from the existing descriptors, the FMLD’s magnitude and direction features are not isolated. They are derived from the “perceived intensity”, thus there is a close relationship between them, which further facilitates the feature representation. In the experiments, we evaluated the performance of FMLD in multiple face databases and compared it with the leading edge approaches. The results show that the proposed FMLD performs well in recognizing images with illumination, pose, expression and occlusion changes. The results also indicate that the feature images produced by FMLD significantly improve the performance of convolutional neural network (CNN), and the combination of FMLD and CNN exhibits better performance than other advanced descriptors.
.Human perception of visual stimulus and its physical characteristics have a nonlinear-logarithmic relation as stated in Fechner’s law, which is a psychophysical law of perception (i.e., subjective sensation). Inspired by Fechner’s law, we use the salient differences among pixels in images as the physical characteristics to mimic the human pattern perception and propose a Fechner local image descriptor (FLID) for face image representation. FLID is a nonlinear descriptor, so the represented image is more hierarchical than the general linear one. In addition, a threshold method is used to divide the features into four different intervals, which can effectively reduce the effects of noise and illumination. However, considering that FLID only extracts the local features of single-scale blocks, we incorporate multi-scale block into FLID and propose a multi-scale block Fechner local image descriptor (MB-FLID) to extract more global structural features. In the experimental part, we verified the performance of FLID and MB-FLID on the Face Recognition Technology (FERET), extended Yale-B, Olivetti Research Laboratories, Yale, and AR face databases, and compared them with a host of other local feature descriptors. The experimental results show that the proposed FLID and MB-FLID outperform the compared descriptors.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.