Smartphone applications (Abbr. apps) have become an indispensable part in our everyday lives. Users determine what apps to use depending on their personal needs and interests. Users with different attributes may have different needs, making it natural for their app usage behaviors to be different. The differences in app usage behaviors among users make it possible to infer their attributes. Knowing such differences could help improve mobile user experiences by enhancing smart services and devices. In this paper, we present an empirical study of investigating smartphone user differences on a large-scale dataset of recently used app lists from 106,672 Android users from China. We first investigate the user differences in app usage behaviors with respect to their attributes (gender, age, and income level). We find significant differences in app usage frequency, app usage with time context and functions. We then extract corresponding features from app usage records to infer the attributes of each user, and investigate the predictive ability of individual features and combinations of different individual features. We achieve the accuracy of 83.29% for gender, 69.94% for age (four age ranges) and 71.43% for income level (three income levels) with the best set of features, respectively. Finally, we discuss the implications of our findings and the limitations of this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.