1 This paper proposes a soft range limited K nearest neighbours (SRL-KNN) localization fingerprinting algorithm. The conventional KNN determines the neighbours of a user by calculating and ranking the fingerprint distance measured at the unknown user location and the reference locations in the database. Different from that method, SRL-KNN scales the fingerprint distance by a range factor related to the physical distance between the user's previous position and the reference location in the database to reduce the spatial ambiguity in localization. Although utilizing the prior locations, SRL-KNN does not require knowledge of the exact moving speed and direction of the user. Moreover, to take into account of the temporal fluctuations of the received signal strength indicator (RSSI), RSSI histogram is incorporated into the distance calculation. Actual on-site experiments demonstrate that the new algorithm achieves an average localization error of 0.66 m with 80% of the errors under 0.89 m, which outperforms conventional KNN algorithms by 45% under the same test environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.