Kidney injury molecule-1 (Kim-1) has been qualified by the Food and Drug Administration and European Medicines Agency as a highly sensitive and specific urinary biomarker to monitor drug-induced kidney injury in preclinical studies and on a case-by-case basis in clinical trials. Here we report the development and evaluation of a rapid direct immunochromatographic lateral flow 15-min assay for detection of urinary Kim-1 (rat) or KIM-1 (human). The urinary Kim-1 band intensity using the rat Kim-1 dipstick significantly correlated with levels of Kim-1 as measured by a microbead-based assay, histopathological damage, and immunohistochemical assessment of renal Kim-1 in a dose- and time-dependent manner. Kim-1 was detected following kidney injury induced in rats by cadmium, gentamicin, or bilateral renal ischemia/reperfusion. In humans, the urinary KIM-1 band intensity was significantly greater in urine from patients with acute kidney injury than in urine from healthy volunteers. The KIM-1 dipstick also enabled temporal evaluation of kidney injury and recovery in two patients who developed postoperative acute kidney injury following cytoreductive surgery for malignant mesothelioma with intraoperative local cisplatin administration. We hope that future, more extensive studies will confirm the utility of these results, which show that the Kim-1/KIM-1 dipsticks can provide a sensitive and accurate detection of Kim-1/KIM-1, thereby providing a rapid diagnostic assay for kidney damage and facilitating the rapid and early detection of kidney injury in preclinical and clinical studies.
Mitochondrial dysfunction is a key feature of injury to numerous tissues and stem cell aging. Although the tissue regenerative role of mesenchymal stem cell (MSC)derived extracellular vesicles (MSC-EVs) is well known, their specific role in regulating mitochondrial function in target cells remains elusive. Here, we report that MSC-EVs attenuated mtDNA damage and inflammation after acute kidney injury (AKI) and that this effect was at least partially dependent on the mitochondrial transcription factor A (TFAM) pathway. In detail, TFAM and mtDNA were depleted by oxidative stress in MSCs from aged or diabetic donors. Higher levels of TFAM mRNA and mtDNA were detected in normal control (NC) MSC-EVs than in TFAM-knockdown (TFAM-KD) and aged EVs. EV-mediated TFAM mRNA transfer in recipient cells was unaffected by transcriptional inhibition. Accordingly, the application of MSC-EVs restored TFAM protein and TFAM-mtDNA complex (nucleoid) stability, thereby reversing mtDNA deletion and mitochondrial oxidative phosphorylation (OXPHOS) defects in injured renal tubular cells. Loss of TFAM also led to downregulation of multiple anti-inflammatory miRNAs and proteins in MSC-EVs. In vivo, intravenously injected EVs primarily accumulated in the liver, kidney, spleen, and lung. MSC-EVs attenuated renal lesion formation, mitochondrial damage, and inflammation in mice with AKI, whereas EVs from TFAM-KD or aged MSCs resulted in poor therapeutic outcomes. Moreover, TFAM overexpression (TFAM-OE) improved the rescue effect of MSC-EVs on mitochondrial damage and inflammation to some extent. This study suggests that MSC-EVs are promising nanotherapeutics for diseases characterized by mitochondrial damage, and TFAM signaling is essential for maintaining their regenerative capacity.
Macrophages (Mφ) are primary innate immune cells that exhibit diverse functions in response to different pathogens or stimuli, and they are extensively involved in the pathology of various diseases. Extracellular vesicles (EVs) are small vesicles released by live cells. As vital messengers, macrophage-derived EVs (Mφ-EVs) can transfer multiple types of bioactive molecules from macrophages to recipient cells, modulating the biological function of recipient cells. In recent years, Mφ-EVs have emerged as vital mediators not only in the pathology of multiple diseases such as inflammatory diseases, fibrosis and cancers, but also as mediators of beneficial effects in immunoregulation, cancer therapy, infectious defense, and tissue repair. Although many investigations have been performed to explore the diverse functions of Mφ-EVs in disease pathology and intervention, few studies have comprehensively summarized their detailed biological roles as currently understood. In this review, we briefly introduced an overview of macrophage and EV biology, and primarily focusing on current findings and future perspectives with respect to the pathological and therapeutic effects of Mφ-EVs in various diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.