The Buchwald-Hartwig amination has been investigated theoretically and experimentally to examine the scope of possible bases under different reaction conditions. Nonpolar solvents resist the formation of new charges. Therefore, the base should be anionic to be able to deprotonate the neutral palladium-amine complex and/or expel the anionic leaving group (bromide). The calculated barrier for the organic base DBU was found to be prohibitively high. In polar solvent, dissociation of bromide becomes possible, but here the base will instead form a complex with palladium, creating an overly stable resting state. The conclusions for both solvent classes hold for both a hindered monodentate phosphine and the labile bidentate ligand BINAP. The computational studies were supported by experimental testing of a range of bases using BINAP in two different solvents, toluene and DMF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.