In this paper, a Homotopy-perturbation analysis of a non-linear contaminant flow equation with an initial continuous point source is provided. The equation is characterized by advection, diffusion and adsorption. We assume that the adsorption term is modeled by Freudlich Isotherm. We provide an approximation of this equation using homotopyperturbation transformation and solve the resulting linear equations analytically by homotopy-perturbation method. Graphs are plotted using the solution obtained from the method and the results are presented, discussed and interpreted. The research findings show that the concentration increases with time and decreases as distance increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.