Bursty continuous media streams with periodic playout deadlines (e.g., VBR-encoded video) are expected to account for a large portion of the traffic in the future Internet. By prefetching parts of ongoing streams into client buffers these bursty streams can be more efficiently accommodated in packet-switched networks. In this paper we develop a modular algorithm-theoretic framework for the fair and efficient transmission of continuous media over a bottleneck link. We divide the problem into the two subproblems of (i) assuring fairness, and (ii) efficiently utilizing the available link capacity. We develop and analyze algorithm modules for these two subproblems. Specifically, we devise a bin packing algorithm for subproblem (i), and a "layered prefetching" algorithm for subproblem (ii). Our simulation results indicate that the combination of these two algorithm modules compares favorably with existing monolithic solutions. This demonstrates the competitiveness of the decoupled modular algorithm framework, which provides a foundation for the development of refined algorithms for fair and efficient prefetching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.