Firmicutes and Bacteroidetes, 2 major phyla of gut microbiota, are involved in lipid and bile acid metabolism to maintain systemic energy homeostasis in host. Recently, accumulating evidence has suggested that dietary changes promptly induce the alteration of abundance of both Firmicutes and Bacteroidetes in obesity and its related metabolic diseases. Nevertheless, the metabolic roles of Firmicutes and Bacteroidetes on such disease states remain unclear. The aim of this study was to determine the effects of antibiotic-induced depletion of Firmicutes and Bacteroidetes on dysregulation of energy homeostasis in obesity. Treatment of C57BL/6J mice with the antibiotics (vancomycin [V] and bacitracin [B]), in the drinking water, before diet-induced obesity (DIO) greatly decreased both Firmicutes and Bacteroidetes in the gut as revealed by pyrosequencing of the microbial 16S rRNA gene. Concomitantly, systemic glucose intolerance, hyperinsulinemia, and insulin resistance in DIO were ameliorated via augmentation of GLP-1 secretion (active form; 2.03-fold, total form; 5.09-fold) independently of obesity as compared with untreated DIO controls. Furthermore, there were increases in metabolically beneficial metabolites derived from the gut. Together, our data suggest that Firmicutes and Bacteroidetes potentially mediate insulin resistance throughmodulationofGLP-1secretion in
Metastasis-associated protein 1 (MTA1) is a component of the nucleosome remodeling and histone deacetylase (HDAC) complex, which plays an important role in progression of breast cancer. Although MTA1 is known as a repressor of the transactivation function of estrogen receptor a (ERa), its involvement in the epigenetic control of transcription of the ERa gene ESR1 has not been studied. Here, we show that silencing of MTA1 reduced the level of expression of ERa in ERa-positive cells but increased it in ERa-negative cells. In both MCF7 and MDA-MB-231, MTA1 was recruited to the region þ146 to þ461 bp downstream of the transcription start site of ESR1 (ERpro315). Proteomics analysis of the MTA1 complex that was pulled down by an oligonucleotide encoding ERpro315 revealed that the transcription factor AP-2g (TFAP2C) and the IFN-g-inducible protein 16 (IFI16) were components of the complex. Interestingly, in MCF7, TFAP2C activated the reporter encoding ERpro315 and the level of ERa mRNA. By contrast, in MDA-MB-231, IFI16 repressed the promoter activity and silencing of MTA1 increased expression of ERa. Importantly, class II HDACs are involved in the MTA1-mediated differential regulation of ERa. Finally, an MDA-MB-231-derived cell line that stably expressed shIFI16 or shMTA1 was more susceptible to tamoxifen-induced growth inhibition in in vitro and in vivo experiments. Taken together, our findings suggest that the MTA1-TFAP2C or the MTA1-IFI16 complex may contribute to the epigenetic regulation of ESR1 expression in breast cancer and may determine the chemosensitivity of tumors to tamoxifen therapy in patients with breast cancer. Cancer Res; 74(5); 1484-94. Ó2014 AACR.
In the present study, we investigated the effects of a treadmill exercise on serum glucose levels and Ki67 and doublecortin (DCX) immunoreactivity, which is a marker of cell proliferation expressed during cell cycles except G0 and early G1 and a marker of progenitors differentiating into neurons, respectively, in the subgranular zone of the dentate gyrus (SZDG) using a type II diabetic model. At 6 weeks of age, Zucker lean control (ZLC) and Zucker diabetic fatty (ZDF) rats were put on a treadmill with or without running for 1 h/day/5 consecutive days at 22 m/min for 5 weeks. Body weight was significantly increased in the control (without running)-ZDF rats compared to that in the other groups. In the control groups blood glucose levels were increased by 392.7 mg/dl in the control-ZDF rats and by 143.3 mg/dl in the control-ZLC rats. However, in the exercise groups, blood glucose levels were similar between the exercise-ZLC and ZDF rats: The blood glucose levels were 110.0 and 118.2 mg/dl, respectively. Ki67 positive nuclei were detected in the SZDG in control and exercise groups. The number of Ki67 positive nuclei was significantly high in exercise groups compared to that in the control groups. In addition, Ki67 positive cells were abundant in ZLC groups compared to those in ZDF groups. DCX-immunoreactive structures in the control-ZDF rats were lower than that in the control-ZLC rats. In the exercise groups, DCX-immunoreactive structures (somata and processes with tertiary dendrites) and DCX protein levels were markedly increased in both the exercise-ZLC and ZDF rats compared to that in the control groups. These results suggest that a treadmill exercise reduces blood glucose levels in ZDF rats and increases cell proliferation and differentiation in the SZDG in ZLC and ZDF rats compared to those in control groups.
It has recently been reported that diabetes mellitus is strongly associated with neurodegenerative and functional disorders of the central nervous system. In the present study, we investigated the changes in proliferating neurons in the dentate gyrus of type II diabetic rats using doublecortin (DCX), a marker of progenitors differentiating into neurons. At 4 weeks after birth, there were no differences in the blood glucose levels of Zucker diabetic fatty (ZDF) rats or Zucker lean control (ZLC) rats. DCX-immunoreactive neurons were detectable in the subgranular zone of the dentate gyrus in both the ZDF and ZLC rats; however, DCX immunoreactivity was higher in the ZLC rats than in the ZDF rats. At 12 weeks after birth, the blood glucose level was significantly increased by 400 mg/dl in the ZDF rats, but the blood glucose level in the ZLC rats was only slightly increased by 152.3 mg/dl. DCX immunoreactivity was significantly decreased in 12-week-old rats in comparison to 4-week-old rats. Some DCX-immunoreactive neurons were detectable in the subgranular zone of the dentate gyrus in the ZLC rats. However, only a few DCX-immunoreactive neurons were observed in the ZDF rats, and the DCX-immunoreactive neurons in the ZDF rats did not show fully developed processes. These results suggest that DCX-immunoreactive neurons were significantly decreased in an age-dependent manner and that DCX-immunoreactive neurons were also reduced in diabetic rats. In addition, the reduction in DCX-immunoreactive neurons in age matched rats may be associated with type II diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.