Crop raiding can reduce farmers' tolerance towards wildlife. Despite higher human population densities in rural areas, and more rapid conversion of forest to farmland, much less is known about crop raiding in Asia than in Africa. Over 14 months, we identified perceived and actual crop pests, and their patterns of crop raiding from farmland in and around Kerinci Seblat National Park, Sumatra. Farmers named either the wild boar Sus scrofa (80%) or the pig-tailed macaque Macaca nemestrina (20%) as the two most destructive crop pests. From 5125 crop raids by 11 species of mammal, most raids were indeed made by the wild boar (56%) and the pig-tailed macaque (19%). For all species combined, temporal crop raiding peaks were positively correlated with periods of high rainfall. Spatially, most crop raids occurred nearest to the forest edge and the local guarding strategies used were ineffective. However, raids by wild boars were more extensive than raids by pig-tailed macaques, which caused much greater crop damage (73%) than wild boars (26%), contrary to farmers' perceptions. Our research suggests that alternative mitigation strategies need to be trialed over dry and rainy seasons to identify the most effective strategies and that guarding effort should be increased during the rainy seasons and tailored towards specific crop raiding species based on their unique spatial patterns.
Large carnivores living in tropical rainforests are under immense pressure from the rapid conversion of their habitat. In response, millions of dollars are spent on conserving these species. However, the cost-effectiveness of such investments is poorly understood and this is largely because the requisite population estimates are difficult to achieve at appropriate spatial scales for these secretive species. Here, we apply a robust detection/non-detection sampling technique to produce the first reliable population metric (occupancy) for a critically endangered large carnivore; the Sumatran tiger (Panthera tigris sumatrae). From 2007–2009, seven landscapes were surveyed through 13,511 km of transects in 394 grid cells (17×17 km). Tiger sign was detected in 206 cells, producing a naive estimate of 0.52. However, after controlling for an unequal detection probability (where p = 0.13±0.017; ±S.E.), the estimated tiger occupancy was 0.72±0.048. Whilst the Sumatra-wide survey results gives cause for optimism, a significant negative correlation between occupancy and recent deforestation was found. For example, the Northern Riau landscape had an average deforestation rate of 9.8%/yr and by far the lowest occupancy (0.33±0.055). Our results highlight the key tiger areas in need of protection and have led to one area (Leuser-Ulu Masen) being upgraded as a ‘global priority’ for wild tiger conservation. However, Sumatra has one of the highest global deforestation rates and the two largest tiger landscapes identified in this study will become highly fragmented if their respective proposed roads networks are approved. Thus, it is vital that the Indonesian government tackles these threats, e.g. through improved land-use planning, if it is to succeed in meeting its ambitious National Tiger Recovery Plan targets of doubling the number of Sumatran tigers by 2022.
Abstract:We provide the first assessment of tropical peatland depth of burn (DoB) using structure from motion (SfM) photogrammetry, applied to imagery collected using a low-cost, low-altitude unmanned aerial vehicle (UAV) system operated over a 5.2 ha tropical peatland in Jambi Province on Sumatra, Indonesia. Tropical peat soils are the result of thousands of years of dead biomass accumulation, and when burned are globally significant net sources of carbon emissions. The El Niño year of 2015 saw huge areas of Indonesia affected by tropical peatland fires, more so than any year since 1997. However, the Depth of Burn (DoB) of these 2015 fires has not been assessed, and indeed has only previously been assessed in few tropical peatland burns in Kalimantan. Therefore, DoB remains arguably the largest uncertainty when undertaking fire emissions calculations in these tropical peatland environments. We apply a SfM photogrammetric methodology to map this DoB metric, and also investigate combustion heterogeneity using orthomosaic photography collected using the UAV system. We supplement this information with pre-burn airborne light detection and ranging (LiDAR) data, reducing uncertainty by estimating pre-burn soil height more accurately than from interpolation of adjacent unburned areas alone. Our pre-and post-fire Digital Terrain Models (DTMs) show accuracies of 0.04 and 0.05 m (root-mean-square error, RMSE) respectively, compared to ground-based global navigation satellite system (GNSS) surveys. Our final DoB map of a 5.2 ha degraded peat swamp forest area neighboring Berbak National Park (Sumatra, Indonesia) shows burn depths extending from close to zero to over 1 m, with a mean (±1σ) DoB of 0.23 ± 0.19 m. This lies well within the range found by the few other studies available (on Kalimantan; none are available on Sumatra). Our combustion heterogeneity analysis suggests the deepest burns, which extend to~1.3 m, occur around tree roots. We use these DoB data within the Intergovernmental Panel on Climate Change (IPCC) default equation for fire emissions to estimate mean carbon emissions as 134 ± 29 t·C·ha −1 for this peatland fire, which is in an area that had not had a recorded fire previously. This is amongst the highest per unit area fuel consumption anywhere in the world for landscape fires. Our approach provides significant uncertainty reductions in such emissions calculations via the reduction in DoB uncertainty, and by using the UAV SfM approach this is accomplished at a fraction of the cost of airborne LiDAR-albeit over limited sized areas at present. Deploying this approach at locations across Indonesia, sampling a variety of fire-affected landscapes, would provide new and important DoB statistics for producing optimized carbon and greenhouse gas (GHG) emissions estimates from peatland fires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.